Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,566 Full-Text Articles 3,605 Authors 593,671 Downloads 122 Institutions

All Articles in Engineering Physics

Faceted Search

1,566 full-text articles. Page 13 of 68.

Proton Aurora At Mars: Assessing The Characteristics, Variability, And Driving Mechanisms Of A Newly Discovered Phenomenon, Andréa C.G. Hughes 2021 Embry-Riddle Aeronautical University

Proton Aurora At Mars: Assessing The Characteristics, Variability, And Driving Mechanisms Of A Newly Discovered Phenomenon, Andréa C.G. Hughes

Doctoral Dissertations and Master's Theses

The purpose of this doctoral research dissertation is to develop a deeper understanding of the phenomenology, variability and driving processes of proton aurora at Mars. Proton aurora are the most recently discovered of the three types of Martian aurora. Due to Mars’ lack of a global dipole magnetic field, the formation processes of Martian proton aurora are uniquely different than aurora on Earth. Martian proton aurora are expected to form on the planet’s dayside via electron stripping/charge exchange processes between solar wind protons and the neutral hydrogen corona. Herein, I present the results of a study of proton aurora at …


Potential Applications Of Electrodynamic Tethers, Sai Charan Petchetti 2021 FIITJEE Junior College, Saifabad

Potential Applications Of Electrodynamic Tethers, Sai Charan Petchetti

International Journal of Aviation, Aeronautics, and Aerospace

In recent decades, alternative propulsion systems have been investigated and have attracted great interest in the space community. Most of these alternative propulsion systems need propellants. One alternative propulsion system that does not require propellants and is not often discussed is electrodynamic tethers (EDTs). This paper speculates the potential applications of EDTs ranging from radiation belt remediation to momentum exchange tether re-boosting.


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel 2020 New Jersey Institute of Technology

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland 2020 University of Dundee

Drawing Parallels In Art Science For Collaborative Learning: A Case Study, Karen Westland

The STEAM Journal

This research paper explores drawing as a tool to facilitate interdisciplinary practice. Outlined is the personal experience of PhD researcher [name removed] in their physics/craft research project, combined with thoughts and opinions from collaborators gathered through group discursive interviews. Interdisciplinary projects face interpersonal and conceptually ambiguous challenges which can be addressed through adopting drawing techniques for educational purposes. Findings highlight that drawing can assist across a breadth of applications as a learning tool for everyone, regardless of drawing ability, to improve the functionality of collaborative projects. Specifically, drawing combined with other communication techniques develops a performative communicative approach that enriches …


Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova 2020 Chirchik State Pedagogical Institute of Tashkent region

Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova

Acta of Turin Polytechnic University in Tashkent

The problem of vibration of a single-mass system under the force excitation of vibration associated with a fixed base by a weightless nonlinear viscoelastic spring is considered. To take into account the rheological properties of the spring material, the Boltzmann-Volterra principle was used. Mathematical models of the problem under consideration are obtained, which are described by integro-differential equations. A solution method based on the use of quadrature formulas has been developed and a computer program has been compiled on its basis, the results obtained are presented in the form of graphs. The influence of nonlinear and rheological properties of a …


1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains recorded and processed bubble sounds under different conditions: a few bubbles vs. constant flow bubbles. Each condition is tested with nitrogen and with methane.


4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all ReadMe files for test data, modeling data, and localization data, as well as the corresponding codes.


5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all codes for the study.


6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all conference presentations, manuscripts, technical reports, posters.


2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for acoustic bubble modeling.


3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao 2020 University of Mississippi

3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for oil leakage source localization.


Improving Hydrid Pet/Mri Cardiovascular Imaging With Improved Hardware Design And Attenuation Correction Coefficient, Adam Helmy Farag 2020 The University of Western Ontario

Improving Hydrid Pet/Mri Cardiovascular Imaging With Improved Hardware Design And Attenuation Correction Coefficient, Adam Helmy Farag

Electronic Thesis and Dissertation Repository

According to the World Health Organization (WHO) report in 2019, cardiovascular diseases (CVD) cause 52% of all illness-related deaths globally and are considered to be the second most common cause of death in Canada. CVD is also estimated to cost the Canadian economy about $21.2 billion in direct and indirect costs. With these figures, it is vital to develop the most effective and accurate methods and tools to diagnose accurately CVD and their causes. One of the promising tools for accurate diagnostic and therapeutic of CVD is the integrated Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) PET/MRI technology, …


Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek 2020 University of Tennessee, Knoxville

Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek

Doctoral Dissertations

Permeated throughout the ocean floor and arctic permafrost, natural gas hydrates contain an estimated 3000 trillion cubic meters, over three times that of traditional shale deposits, of CH4 that is accessible for extraction. Gas hydrates are a crystal structure in which water molecules form a cage network, the host, through hydrogen bonds while trapping a guest molecule such as CH4 in the cavities. These compounds form naturally where the appropriate low temperature and high pressure conditions occur. A promising and tested method of methane recovery is through exchange with CO2, which energetically takes place of the …


Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan 2020 University Of Tennessee Knoxville

Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan

Doctoral Dissertations

Most biological systems employ multiple redundant actuators, which is a complicated problem of controls and analysis. Unless assumptions about how the brain and body work together, and assumptions about how the body prioritizes tasks are applied, it is not possible to find the actuator controls. The purpose of this research is to develop computational tools for the analysis of arbitrary musculoskeletal models that employ redundant actuators. Instead of relying primarily on optimization frameworks and numerical methods or task prioritization schemes used typically in biomechanics to find a singular solution for actuator controls, tools for feasible sets analysis are instead developed …


Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès 2020 Universite Paris-Saclay

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès

Kirill Belashchenko Publications

Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping …


The Importance Of Frontier Orbital Symmetry In The Adsorption Of Diiodobenzene On Mos2(0001), Prescott E. Evans, Zahra Hooshmand, Talat S. Rahman, Peter Dowben 2020 University of Nebraska–Lincoln

The Importance Of Frontier Orbital Symmetry In The Adsorption Of Diiodobenzene On Mos2(0001), Prescott E. Evans, Zahra Hooshmand, Talat S. Rahman, Peter Dowben

Peter Dowben Publications

Evidence of a role of frontier orbital symmetry, in the adsorption process of diiodobenzene on MoS2(0001), appears in the huge differences in the rate of adsorption between 1,3-diiodobenzene, 1,2-diiodobenzene and 1,4-diiodobenzene isomers on MoS2. Experiments indicate that the rate of adsorption of 1,3-diiodobenzene on MoS2(0001) is much greater than that of the 1,2-diodobenzene and 1,4-diiodbenzene isomers. As the differences in calculated diiodobenzene isomer-MoS2 system adsorption energies and electron affinities are negligible, frontier orbital symmetry appears to play a significant role in diiodobenzene adsorption on MoS2(0001). The experimental and theory results, in combination, suggest …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim 2020 Air Force Institute of Technology

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger 2020 Air Force Institute of Technology

Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger

Theses and Dissertations

Optical Emission Spectroscopy (OES) is an increasingly relevant technique in plasma diagnostics due to its inherent non-invasive nature and simple application relative to other popular techniques. In this work, common OES techniques are combined with novel methods, developed here, in an effort to provide comprehensive OES techniques for stationary and supersonic air microwave discharges. To this end, a detailed collisional-radiative model for strong atomic oxygen lines has been developed and used to identify the importance of often overlooked mechanisms including cascade emission and metastable excitation. Using these results, a combined argon actinometry technique was developed which makes use of the …


Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić 2020 Institute Ruder Boskovic

Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić

Kirill Belashchenko Publications

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to …


Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller 2020 University of California, San Diego

Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller

Kirill Belashchenko Publications

We have probed directly the temperature and magnetic field dependence of pinned uncompensated magnetization at the interface of antiferromagnetic FeF2 with Cu, using FeF2-Cu-Co spin valves. Electrons polarized by the Co layer are scattered by the pinned uncompensated moments at the FeF2-Cu interface giving rise to giant magnetoresistance. We determined the direction and magnitude of the pinned uncompensated magnetization at different magnetic fields and temperatures using the angular dependencies of resistance. The strong FeF2 anisotropy pins the uncompensated magnetization along the easy axis independent of the cooling field orientation. Most interestingly, magnetic fields as …


Digital Commons powered by bepress