Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,320 Full-Text Articles 3,855 Authors 648,627 Downloads 115 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,320 full-text articles. Page 3 of 94.

Functionalized Go Nanoplatelets With Folic Acid As A Novel Material For Boosting Humidity Sensing Of Chitosan/Pva Nanocomposites For Active Food Packaging, Mohamed Morsy 2023 The British University in Egypt

Functionalized Go Nanoplatelets With Folic Acid As A Novel Material For Boosting Humidity Sensing Of Chitosan/Pva Nanocomposites For Active Food Packaging, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni 2023 Department of Physics, Hansraj College, University of Delhi, Delhi, India

Enhanced Acousto-Optic Properties Of Silicon Carbide Based Layered Structure, Namrata Dewan Soni

Al-Bahir Journal for Engineering and Pure Sciences

This study investigates the feasibility of using silicon carbide-based layered surface acoustic wave (SAW) devices in acousto-optic applications. The acousto-optic properties of the temperature-stable layered structure TeO3/SiC/128oY-X LiNbO3 are investigated through theoretical analysis. This analysis includes the evaluation of key parameters such as the overlap integral, figure of merit, and diffraction efficiency. The SAW propagation characteristics and field profiles required for these calculations are obtained using SAW software. Results show that the layered structure has high diffraction efficiency of nearly 96% and a promising value for the acousto-optic figure of merit, indicating potential use in low driving power acousto-optic devices. …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos 2023 University of Denver

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova 2023 The Graduate Center, City University of New York

The Study Of Excitons In 2d Novel Materials And Their Van Der Waals Heterostructures In The Magnetic Field, Anastasia Spiridonova

Dissertations, Theses, and Capstone Projects

This research focuses on the direct and indirect excitons in Rydberg states in monolayers, bilayers, and van der Waals heterostructures composed of 2D semiconductors in the presence of the external magnetic field. In our work, we report binding energies of direct and indirect excitons in Rydberg states, the energy contribution from the magnetic field to the binding energies of magnetoexcitons, and diamagnetic coefficients (DMCs) of magnetoexcitons.

We study isotropic materials: transition metal dichalcogenides, TMDCs (WSe2, WS2, MoSe2, MoS2), and Xenes (silicene, germanene, stanene), and anisotropic materials: phosphorene and transition metal trichalcogenides, TMTCs …


Design And Implementation Of Montmorillonite Clay-Based Catalyst For Carbon Nanotube Synthesizing, Mohamed Morsy 2023 The British University in Egypt

Design And Implementation Of Montmorillonite Clay-Based Catalyst For Carbon Nanotube Synthesizing, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Synthesis And Functional Properties Of La2fecro6 Based Nanostructures, Mohamed Morsy 2023 The British University in Egypt

Synthesis And Functional Properties Of La2fecro6 Based Nanostructures, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy 2023 The British University in Egypt

Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn 2023 Dartmouth College

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Origin And Structure Of The First Sharp Diffraction Peak Of Amorphous Solids, Devilal Dahal 2023 The University of Southern Mississippi

Origin And Structure Of The First Sharp Diffraction Peak Of Amorphous Solids, Devilal Dahal

Dissertations

Several explanations have been reported in the literature about the origin of extended-range oscillations (EROs) in the atomic pair-correlation function of amorphous materials. Although the radial ordering beyond the short-range order of about 5 Å has been extensively studied in amorphous materials, the exact nature of the radial ordering beyond a nanometer is still not resolved. This dissertation address this problem and explains the nature of the EROs by using high-quality models of amorphous silicon (a-Si) obtained from Monte Carlo and Molecular Dynamics simulations. The extended-range ordering in a-Si is examined through radial oscillations on the length …


Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob 2023 University of Maine

Influence Of Platinum Nanoparticles On Ionic Transport And Hydrogen Reactivity Of Yttria-Stabilized Zirconia Thin Films, Firas Mahyob

Electronic Theses and Dissertations

Yttria-stabilized zirconia (YSZ) is a widely used ceramic material in solid oxide fuel cells, oxygen sensors, and sensing applications due to its high ionic conductivity, chemical inertness, and thermal stability. YSZ is promising active coating for use in miniaturized harsh environment wireless surface acoustic sensors to monitor gases such as H2. Adding catalytic Pt nanoparticles can enhance gas reactivity and lead to associated film conductivity changes.

In this work, thin films with an (8% Y2O3 - 92% ZrO2) composition were deposited onto piezoelectric langasite substrates using RF magnetron sputtering in Ar:O2 - …


Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. McCluskey, A. Kumar, Alexei Gruverman, I. Luk’yanchuk, J. M. Gregg 2023 Queen’s University Belfast

Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg

Alexei Gruverman Publications

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of …


Magnetic Properties Of Polycrystalline Spinel Oxides From Solid State Reaction, Camden Olds 2023 University of Nebraska-Lincoln

Magnetic Properties Of Polycrystalline Spinel Oxides From Solid State Reaction, Camden Olds

Honors Theses

Spinel crystal materials of nickel, cobalt, and iron oxides have seen abundant research for their strong conductivity, ferromagnetic and ferroelectric properties, and their catalytic uses. These can be synthesized by a number of means. This project explores the use of the solid state synthesis method, which benefits from simplicity, of this family of materials, looking for interesting phase shift lines in the triangle between of varying compositions of these three metals.

Nickel cobaltite and other related spinels were synthesized from two different solid state approaches and characterized using XRD and SQUID magnetometry. The range 0.5-0.6 of molar ratios of nickel …


Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood 2023 Chapman University

Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood

Computational and Data Sciences (PhD) Dissertations

A full review of the research conducted and published during my PhD studies in Computational and Data Sciences at Chapman University, under the advisement of Dr. Armen Gulian, are presented. Using the set of time-dependent Ginzburg-Landau (TDGL) equations with inclusion of the interference current and the non-equilibrium phonon term, we modeled the dynamics of superconductors in various theory revealing states and practical purposes. A review of the history and phenomenon of superconductivity, including modern applications, is introduced. The Josephson effect and associated Josephson junction are discussed for comparison to our analogous results with the 1-D superconducting wire. The mathematics of …


Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton 2023 University of Nevada, Las Vegas

Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

The assumptions for the 1912 Grüneisen parameter are reviewed, particularly in the cases of anisotropy, high temperatures, and across phase boundaries. Two main case studies are shown: β-Sn, and Cd. The main techniques of this work involve resistively heated diamond anvil cells with both optical Raman spectroscopy and x-ray diffraction. It is found in Sn that the isothermal mode Grüneisen tensor along increasing isotherms diverges from the single-valued temperature aggregate at the onset of melt, and this is proposed to use as a method of exploring melt phase boundaries in other systems. This method is examined once again on another …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back 2023 Clemson University

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu 2023 University of Arkansas-Fayetteville

Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu

Graduate Theses and Dissertations

This dissertation presents three projects that investigate the complex phenomena of ferroelectricity under different conditions in BaTiO3, LiNbO3, and LiZnSb using first-principles density functional calculations. Extended defects in ferroelectric solids play a crucial role in reducing the lifetime and performance of ferroelectric devices by causing fatigue, domain pinning, and aging. Thus, understanding their impact is of critical importance for the development of reliable and high-performance ferroelectric devices. In addition, hyperferroelectricity is an intriguing phenomenon that has attracted much attention in recent years. Despite the existence of depolarization field, spontaneous polarization persists under an open-circuit boundary condition (OCBC), making hyperferroelectric materials …


Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet 2023 University of Arkansas-Fayetteville

Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet

Graduate Theses and Dissertations

The recently discovered two-dimensional (2D) magnetism has attracted intensive attention due to possible magnetic phenomenon arising from 2D magnetism and their promising potential for spintronics applications. The advances in 2D magnetism have motivated the study of layered magnetic materials, and further enhanced our ability to tune their magnetic properties. Among various layered magnets, tunable magnetism has been widely investigated in metal thiophosphates MPX3. It is a class of magnetic van der Waals (vdW) materials with antiferromagnetic ordering persisting down to atomically thin limit. Their magnetism originates from the localized moments due to 3d electrons in transition metal ions. So, their …


Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton 2023 Utah State University

Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

This work presents a systematic study on sample preparation methods and accuracy of electron yield (EY) measurements of highly insulating, granular materials. EY measurements of highly insulating materials, especially those with high EY, are challenging due to the effects of sample charging even for very low fluence electron probe beams. EY measurements of particulates are complicated by: (i) roughness effects from particulate size, shape, coverage, and compactness; (ii) particle adhesion; (iii) substrate contributions; and (iv) electrostatic repulsion and potential barriers from charged particles and substrates. Numerous methods were explored to rigidly affix particles on conducting substrates at varying coverages for …


Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage 2023 University of Louisville

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers 2023 University of Arkansas, Fayetteville

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Digital Commons powered by bepress