Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,320 Full-Text Articles 3,855 Authors 648,627 Downloads 115 Institutions

All Articles in Condensed Matter Physics

Faceted Search

2,320 full-text articles. Page 7 of 94.

Coupled Oscillators: Protein And Acoustics, Angelique N. McFarlane 2022 New Jersey Institute of Technology

Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane

Theses

This work encompassed three different vibrational energy transfer studies of coupled resonators (metal, topological, and microtubule comparison) inspired by the lattices of microtubules from regular and cancerous cells. COMSOL Multiphysics 5.4 was utilized to design the experiment. The simulation starts with an acoustic pressure study to examine the vibrational modes present in coupled cylinders, representing α-, β-tubulin heterodimers. The Metal Study consisted of 3 models (monomer, dimer, and trimer) to choose the correct height (40 mm) and mode (Mode 1) for study. The Topological Study was run to predict and understand how the lattice structure changes over a parametric sweep …


Geometry Of Discrete And Continuous Bounded Surfaces, Kyung Eun Kim 2022 Syracuse University

Geometry Of Discrete And Continuous Bounded Surfaces, Kyung Eun Kim

Dissertations - ALL

We work on reconstructing discrete and continuous surfaces with boundaries using length constraints. First, for a bounded discrete surface, we discuss the rigidity and number of embeddings in three-dimensional space, modulo rigid transformations, for given real edge lengths. Our work mainly considers the maximal number of embeddings of rigid graphs in three-dimensional space for specific geometries (annulus, strip). We modify a commonly used semi-algebraic, geometrical formulation using Bézout's theorem, from Euclidean distances corresponding to edge lengths. We suggest a simple way to construct a rigid graph having a finite upper bound. We also implement a generalization of counting embeddings for …


Promoting The Humidity Sensing Capabilities Of Titania Nanorods/Rgo Nanocomposite Via De-Bundling And Maximizing Porosity And Surface Area Through Lyophilization, Mohamed Morsy 2022 The British University in Egypt

Promoting The Humidity Sensing Capabilities Of Titania Nanorods/Rgo Nanocomposite Via De-Bundling And Maximizing Porosity And Surface Area Through Lyophilization, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Physical Vapor Transport Growth Of Antiferromagnetic Crcl3 Flakes Down To Monolayer Thickness, Jia Wang, Zahra Ahmadi, David Lujan, Jeongheon Choe, Xiaoqin Li, Jeffrey E. Shield, Xia Hong 2022 University of Nebraska-Lincoln

Physical Vapor Transport Growth Of Antiferromagnetic Crcl3 Flakes Down To Monolayer Thickness, Jia Wang, Zahra Ahmadi, David Lujan, Jeongheon Choe, Xiaoqin Li, Jeffrey E. Shield, Xia Hong

Department of Physics and Astronomy: Faculty Publications

The van der Waals magnets CrX3 (X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two-dimensional (2D) magnetic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of CrCl3 have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. Here, we report the growth of large CrCl3 flakes with well-defined facets down to monolayer thickness (~0.6 nm) via the physical vapor transport technique. Long stripes of tri-layer samples …


Magnetic Skyrmions Unwrapped, Alexey Kovalev 2022 University of Nebraska - Lincoln

Magnetic Skyrmions Unwrapped, Alexey Kovalev

Alexey Kovalev Papers

Experiments with chiral magnets may hold the key to a better understanding of fundamental aspects of transformations between different skyrmionic states, necessary for magnetic memory and logic applications to become a reality.

With the aim of developing computing devices that operate with low power dissipation, scientists have been pursuing the idea of encoding information in magnetic states. Specifically, skyrmions, which can be thought of as whirl-like states of magnetic moments, are promising candidates for this purpose. The advantage of skyrmions lies in their topological protection, a property implying that only a ‘global’ system modification can erase a skyrmion. Realizations of …


The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni 2022 CUNY Brooklyn College

The 'Quantal Newtonian' First Law: A Complementary Perspective To The Stationary-State Quantum Theory Of Electrons, Viraht Sahni

Publications and Research

A complementary perspective to the Göttingen-Copenhagen interpretation of stationary-state quantum theory of electrons in an electromagnetic field is described. The perspective, derived from Schrödinger-Pauli theory, is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ First Law. The Law is in terms of ‘classical’ fields experienced by each electron: the sum of the external and internal fields vanishes. The external field is a sum of the electrostatic and Lorentz fields. The internal field is a sum of fields’ representative of Pauli and Coulomb correlations; kinetic effects; electron density; and internal magnetic component. The energy is obtained …


Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy 2022 The British University in Egypt

Modeling The Electronic Properties For Cnt Interacted With Zno, Cuo, And Co3o4, Mohamed Morsy

Nanotechnology Research Centre

Because of the wide applications of carbon nanotubes (CNTs) and magic properties of metal oxides, Hartree–Fock quantum mechanical calculations at HF/STO-3G were applied to study the electronic properties of CNTs and their interaction with ZnO, CuO, and Co 3O4. Calculations were conducted to calculate HOMO/LUMO bandgap energy ∆E, molecular electrostatic potential (MESP), and total dipole moment (TDM) for CNTs, CNTZn-O, CNT-Cu-O, CNT-Co-O, and CNT-O-Zn, CNT-O-Cu, CNT-O-Co following the two mechanisms of interaction as adsorbed and complex state. The calculations show that the interaction of CNTs with metal oxides increases its reactivity where MESP indicated to more distribution charges and an …


Understanding Liquid Dynamics Using The Van Hove Function From Inelastic Neutron Scattering Measurements, Yadu Krishnan Sarathchandran 2022 University of Tennessee, Knoxville

Understanding Liquid Dynamics Using The Van Hove Function From Inelastic Neutron Scattering Measurements, Yadu Krishnan Sarathchandran

Doctoral Dissertations

Liquid state physics remains relatively unexplored compared to solid-state physics, which achieved massive progress over the last century. The theoretical and experimental methodologies used in solid-state physics are not suitable to study the liquid state due to the latter's strong time dependence and the lack of periodicity in structure. The approaches based on phonon dynamics break down when phonons are over-damped and localized in liquids. The microscopic nature of atomic dynamics and many-body interactions leading to liquid state properties such as viscosity and dielectric loss in liquids remain unclear. Inelastic neutron scattering measurements were done to study the microscopic origins …


Studying Electron Dynamics For Quantum Materials With Real Space Resolution: A Wannier Orbital Approach To Spectroscopy Using High-Performance Supercomputers, Casey J. Eichstaedt 2022 University of Tennessee, Knoxville

Studying Electron Dynamics For Quantum Materials With Real Space Resolution: A Wannier Orbital Approach To Spectroscopy Using High-Performance Supercomputers, Casey J. Eichstaedt

Doctoral Dissertations

Quantum materials have a promising future for energy and security applications which will lay the bedrock for material science research for decades to follow. Partic- ularly, ‘one-dimensional’ Mott-insulating cuprates such as SrCuO 2 and (Ca)Sr 2 CuO 3 have been deemed to fall under a ‘fractionalization’ paradigm in which the electrons disintegrate into bosonic collective excitations of their fundamental constituents— spin, charge, and ‘orbital’ degrees of freedom— due to the anisotropic crystalline structure, deeming them outside the band theory of solids. Here, I provide ab initio theory for the ‘one-dimensional’ cuprates SrCuO 2 and (Ca)Sr 2 CuO 3 using no …


Topological States In Matter, Hasitha W. Suriya Arachchige 2022 University of Tennessee, Knoxville

Topological States In Matter, Hasitha W. Suriya Arachchige

Doctoral Dissertations

Topologically nontrivial spin textures, mesoscopic spin configurations that cannot be continuously transformed to an elementary magnetic configuration such as a ferromagnet or antiferromagnet, are of interest due to their ability to exhibit magnetic solitons, with topological protection. Such properties have the potential for applications in future data storage and communication devices. For example, spin textures found in materials such as MnSi, Cu2OSe3, Co-Zn-Mn alloys, and GaV4S8, commonly known as skyrmions, are driven by the interplay of atomic-scale exchange interactions, single-ion anisotropy, and an applied magnetic field. Of particular importance to this class of materials is the presence of a Dyaloshinski …


Semi-Classical Theories Of Quantum Magnets, Hao Zhang 2022 University of Tennessee, Knoxville

Semi-Classical Theories Of Quantum Magnets, Hao Zhang

Doctoral Dissertations

Recent progress in magnetism has been driven by embracing the complexity associated with entangled spin, orbital, and lattice degrees of freedom and by understanding the emergent quantum behaviors of magnetic systems. Over the past decades, intense efforts have been devoted to “extreme quantum materials” comprising low-dimensional lattices of spin S = 1/2 degrees of freedom, that are candidates to host quantum spin liquid phases with no classical counterpart. Finite-spin (S ≥ 1) systems that exhibit ground states with short-ranged entanglement have not been the center of much attention because they are expected to behave semi-classically. However, as we will demonstrate …


Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen 2022 University of Tennessee, Knoxville

Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen

Doctoral Dissertations

In condensed matter physics, and especially in the study of strongly correlated electron systems, numerical simulation techniques are crucial to determine the properties of the system including interesting phases of matter that arise from electron-electron interactions. Many of these interesting phases of matter, including but not limited to Mott-insulating materials and possibly high-temperature superconducting systems, can be modeled by the Hubbard model. Although it is one of the simplest models to include electron-electron interactions, it cannot be solved analytically in more than one dimension and thus numerical techniques must be employed. Although there have been great strides in classical numerical …


Numerical Studies Of Correlated Topological Systems, Rahul Soni 2022 University of Tennessee, Knoxville

Numerical Studies Of Correlated Topological Systems, Rahul Soni

Doctoral Dissertations

In this thesis, we study the interplay of Hubbard U correlation and topological effects in two different bipartite lattices: the dice and the Lieb lattices. Both these lattices are unique as they contain a flat energy band at E = 0, even in the absence of Coulombic interaction. When interactions are introduced both these lattices display an unexpected multitude of topological phases in our U -λ phase diagram, where λ is the spin-orbit coupling strength. We also study ribbons of the dice lattice and observed that they qualitative display all properties of their two-dimensional counterpart. This includes flat bands near …


Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover 2022 Clemson University

Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover

All Dissertations

Quantum-mechanical calculations using density functional theory with the generalized gradient approximation were employed to investigate the effects dopants have on the uranium dioxide (UO2) structure. Uraninite is a common U4+ mineral in the Earth's crust and an important material used to produce energy and medical isotopes. Though the incorporation mechanism remains unclear, divalent cations are known to incorporate into the uranium dioxide system. Three charge-balancing mechanisms were evaluated to achieve a net neutral system, including the substitution of (1) a divalent cation for a tetravalent uranium atom and oxygen atom; (2) two divalent cations for a tetravalent …


Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido 2022 University of Texas at El Paso

Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido

Open Access Theses & Dissertations

Classical molecular dynamics methods can accurately describe a broad set of many-atomssystems. Although more economical, the results given by this framework lack the precision capable of density functional theory (DFT). Therefore, the structural stability of the B2 phase of a body-centered-cubic iron-vanadium (FeV) alloy using DFT on the electronic structure level is analyzed to verify and further explain classical results obtained by our group in this same alloy. Using Quantum Espresso and Phonopy for the computational simulations, the plotted band structure, electronic density of states (eDOS), phonon dispersions, charge density, and Fermi surfaces for various compressed unit cells are presented. …


Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari 2022 Clemson University

Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari

All Dissertations

The emergence of two-dimensional (2D) layered materials provides unprecedented opportunities for studying excitonic physics due to the strong Coulomb interaction between the electron-hole pair. Because of the reduced dimensionality and weak dielectric screening, the exciton is stable at room temperature, unlike bulk semiconductors. The evolution from low to high carrier density for optical gain in 2D semiconductors involves insulating exciton gas, exciton condensation, co-existence of various excitonic complexes, electron-hole plasmas (EHPs), or electron-hole liquids (EHLs), leading to the Mott transition. Strong interaction among the excitons, such as exciton-exciton annihilation (EEA), serves as a hot-carrier generation. A bound exciton dissociates into …


Quantum Transport And Electric-Field Effects In Layered Topological Semimetals And Magnetic Materials, Arash Fereidouni Ghaleh Minab 2022 University of Arkansas, Fayetteville

Quantum Transport And Electric-Field Effects In Layered Topological Semimetals And Magnetic Materials, Arash Fereidouni Ghaleh Minab

Graduate Theses and Dissertations

This dissertation describes transport experiments on quantum devices in layered Dirac nodal line topological semimetals and antiferromagnetic materials down to a few layers. We used gate-induced effects to alter the transport properties of these materials.

First, we introduced current annealing in topological semimetals to achieve high-quality devices. We demonstrate current annealing to substantially improve the electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2,000,000 and 20,000, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe improved by a …


Study Of Thermoelectric And Lattice Dynamics Properties Of 2d Layered Mx (M = Sn, Pb; X = S, Se, Te) And Zrs2 Compounds Using First-Principles Approach, Abhiyan Pandit 2022 University of Arkansas, Fayetteville

Study Of Thermoelectric And Lattice Dynamics Properties Of 2d Layered Mx (M = Sn, Pb; X = S, Se, Te) And Zrs2 Compounds Using First-Principles Approach, Abhiyan Pandit

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of thermoelectric and lattice dynamics properties of two-dimensional (2D) MX (M = Sn, Pb; X = S, Se, Te) and ZrS2 compounds based on the first-principles density functional theory. The dimensionality reduction (e.g., using 2D structure) of bulk materials is found to have enhanced thermoelectric efficiency. This enhancement is attributed to the increase of the Seebeck coefficient as a result of higher electronic density of states near the Fermi level in low-dimensional materials. In addition, lowering the dimensionality increases phonon scattering near interfaces and surfaces in 2D materials, which leads to a …


Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita 2022 Old Dominion University

Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita

Physics Theses & Dissertations

We investigated the performance limitations of superconducting radio-frequency (SRF) cavities and materials using multiple experimental techniques. In particular, this study focuses on understanding the surface properties of nitrogen-doped Nb cavities and superconducting thin films with higher Tc such as Nb3Sn. The main goal of this work is to use different techniques to better understand each aspect of the complex loss mechanism in superconductors to further improve the already highly efficient SRF cavities.

Nitrogen doping applied to a Nb SRF cavity significantly improves the quality factor Q0 compared to a conventional Nb cavity, at an expense of …


Nanoscale Studies Of The Ferroelectric And Electromechanical Properties Of Hafnia-Based Capacitors, Pratyush Buragohain 2022 University of Nebraska–Lincoln

Nanoscale Studies Of The Ferroelectric And Electromechanical Properties Of Hafnia-Based Capacitors, Pratyush Buragohain

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The work presented in this dissertation aims to provide nanoscopic insights into the electrical and electromechanical behavior of the recently discovered ferroelectric HfO2 or hafnia-based capacitors. Hafnia-based ferroelectrics are highly promising for technological applications due to compatibility with the existing Si technology. To realize the full potential of hafnia, however, requires comprehensive understanding of its properties. In this regard, this dissertation hopes to bridge a gap between an understanding of the nanoscopic and macroscopic properties of hafnia by performing combined high-resolution piezoresponse force microscopy (PFM) and pulse switching studies.

More specifically, the dynamics of domain nucleation and wall motion …


Digital Commons powered by bepress