Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

451 Full-Text Articles 746 Authors 148,912 Downloads 58 Institutions

All Articles in Nanotechnology Fabrication

Faceted Search

451 full-text articles. Page 1 of 21.

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi 2024 University of Kentucky

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


Design, Fabrication, And Integration Of Robotic Skin Sensors For Human Robot Interaction., Olalekan Olakitan Olowo 2023 University of Louisville

Design, Fabrication, And Integration Of Robotic Skin Sensors For Human Robot Interaction., Olalekan Olakitan Olowo

Electronic Theses and Dissertations

Enhancing physical human-robot interaction in modern robotics relies on refining the tactile perception of robot skin sensors. This research focuses on crucial aspects of the development process, including fabrication techniques, miniaturization, and integration for a more efficient collaborative human-robot interface. The fabrication process of robot skin sensors, designed to mimic human skin, is explored both within and outside cleanroom environments. An enhanced technique is presented to increase fabrication yield and create more miniaturized sensor designs with feature sizes in the tens of microns. These sensors function as piezoresistive arrays using organic polymers like PEDOT: PSS as the pressure-sensing medium. Various …


Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic 2023 University of Nebraska-Lincoln

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation will show successful development and characterization of amorphous boron carbide-amorphous silicon heterojunction device with potential for neutron detection. The amorphous hydrogenated boron carbide (a-BC:H) has been extensively researched as a semiconductor for neutron voltaic device fabrication. Naturally occurring boron contains 19.8% of boron isotope B10 that has a high absorption cross section of thermal neutrons at lower energies, and boron carbide contains 14.7% of that B10 isotope. Therefore, as a semiconductor compound of boron a-BC:H has the ability to absorb radiation, generate charge carriers, and collect those carriers. Previous work on a-BC:H devices investigated the fabrication …


Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang 2023 University of Denver

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim 2023 Air Force Institute of Technology

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young 2023 Louisiana State University at Baton Rouge

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young

LSU Doctoral Dissertations

The electrical characteristics of 2D materials such as high electron mobility and current density are of great interest to various fields from optoelectronics to renewable energy. Researchers have focused their efforts on transition metal dichalcogenides (TMDCs) due to their direct energy band gap. One such TMDC that has garnered much attention is molybdenum disulfide (MoS2). MoS2 has electrical properties comparable to graphene and is a TMDC with characteristics amenable to applications such as solar cells and sensors. Commonly deposited through time-consuming and complex deposition methods such as chemical vapor deposition (CVD), the viability of MoS2 as an electronic material will …


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen 2023 New Jersey Institute of Technology

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Spice Modeling Of Biosensing Field-Effect Transistor, Alex Castro 2023 California Polytechnic State University, San Luis Obispo

Spice Modeling Of Biosensing Field-Effect Transistor, Alex Castro

Electrical Engineering

This project created a user manual on how to generate an easily configurable and implementable Spice model for Field Effect Transistor (FET) devices created in the Cal Poly clean room. The document contained step by step procedures depicting the proper execution techniques and example results for different experiments required to gather the proper information for these models. This testing methodology was shown for finding the numerous different device parameters of a FET, including the I-V curves, threshold voltage, and subthreshold current values. The manual then described how to transfer this data into a new Spice model to allow for simulation …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati 2023 New Jersey Institute of Technology

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai 2023 Clemson University

A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai

All Dissertations

In this work, the manipulation including generation and detection of the asymmetric perfect vortex (APV) carrying fractional orbital angular momentum (OAM) was demonstrated and discussed. All the manipulation of the modes is in real-time which provides a perfect tool for sensing the dynamic properties of complex media. The OAM-involved nonlinear conversion, specifically the second-harmonic generation (SHG) using the APV and asymmetric Bessel-Gaussian (BG) beams was studied in detail.

The generation and detection of the APV are based on the HOBBIT concept which includes acoustic optical deflector (AOD) and log-polar coordinate transformation optics. The RF signal driving the AOD allows the …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang 2023 University of Louisville

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers 2023 University of Arkansas, Fayetteville

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss 2023 University of Massachusetts Amherst

Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss

Doctoral Dissertations

Designing improved field-effect-transistors (FETs) that are mass-producible and meet the fabrication standards set by legacy silicon CMOS manufacturing is required for pushing the microelectronics industry into further enhanced technological generations. Historically, the downscaling of feature sizes in FETs has enabled improved performance, reduced power consumption, and increased packing density in microelectronics for several decades. However, many are claiming Moore's law no longer applies as the era of silicon CMOS scaling potentially nears its end with designs approaching fundamental atomic-scale limits -- that is, the few- to sub-nanometer range. Ultrathin two-dimensional (2D) materials present a new paradigm of materials science and …


Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna 2023 University of Texas at Tyler

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna

Electrical Engineering Theses

This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …


Implementing Commercial Inverse Design Tools For Compact, Phase-Encoded, Plasmonic Digital Logic Devices, Michael Efseaff, Kyle Wynne, Krishna Narayan, Mark C. Harrison 2023 Chapman University

Implementing Commercial Inverse Design Tools For Compact, Phase-Encoded, Plasmonic Digital Logic Devices, Michael Efseaff, Kyle Wynne, Krishna Narayan, Mark C. Harrison

Engineering Faculty Articles and Research

Numerical simulations have become an essential design tool in the field of photonics, especially for nanophotonics. In particular, 3D finite-difference-time-domain (FDTD) simulations are popular for their powerful design capabilities. Increasingly, researchers are developing or using inverse design tools to improve device footprints and performance. These tools often make use of 3D FDTD simulations and the adjoint optimization method. We implement a commercial inverse design tool with these features for several plasmonic devices that push the boundaries of the tool. We design a logic gate with complex design requirements as well as a y-splitter and waveguide crossing. With minimal code changes, …


A Phase Change Memory And Dram Based Framework For Energy-Efficient And High-Speed In-Memory Stochastic Computing, Supreeth Mysore 2023 University of Kentucky

A Phase Change Memory And Dram Based Framework For Energy-Efficient And High-Speed In-Memory Stochastic Computing, Supreeth Mysore

Theses and Dissertations--Electrical and Computer Engineering

Convolutional Neural Networks (CNNs) have proven to be highly effective in various fields related to Artificial Intelligence (AI) and Machine Learning (ML). However, the significant computational and memory requirements of CNNs make their processing highly compute and memory-intensive. In particular, the multiply-accumulate (MAC) operation, which is a fundamental building block of CNNs, requires enormous arithmetic operations. As the input dataset size increases, the traditional processor-centric von-Neumann computing architecture becomes ill-suited for CNN-based applications. This results in exponentially higher latency and energy costs, making the processing of CNNs highly challenging.

To overcome these challenges, researchers have explored the Processing-In Memory (PIM) …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula 2022 New Jersey Institute of Technology

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Wearable Sensors For Plants, Nafize Ishtiaque Hossain 2022 University of Texas at Tyler

Wearable Sensors For Plants, Nafize Ishtiaque Hossain

Electrical Engineering Theses

This thesis reports PlantFit: a research and development project that is intended to develop wearable sensors for plants. Plants are responsible for providing food, fiber, fuel, and fodder to the society. To overcome the problem of a limited land base, a more efficient farming approach needs to be developed, and thus precision farming is required. Precision farming would entail personalized healthcare in plants. When the plant is under any stress, the productivity declines. Plants release phytohormones, also known as early responders, in response to these stressors. The key crop phytohormones that respond to environmental stresses include salicylic acid (SA), indole-3-acetic …


An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin 2022 University of Texas at Tyler

An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin

Electrical Engineering Theses

Inflammatory biomarkers present in the human body play a vital role in medical field by guiding the clinician in decision-making for many diseases. The levels of these inflammatory biomarkers are associated with the severity and progress of several diseases. Researchers have found that increasing severity of many diseases such as cardiovascular disease, after surgery infection, and adverse clinical outcomes due to infectious diseases, results in the elevation of the level of inflammatory biomarkers in human sweat. Furthermore, the inflammatory cytokines indicate the pathophysiology and prognosis of critically ill SARS‑CoV‑2 patients. In this thesis work, different sensors have been developed for …


Digital Commons powered by bepress