Open Access. Powered by Scholars. Published by Universities.®

Number Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

202 Full-Text Articles 224 Authors 34,165 Downloads 52 Institutions

All Articles in Number Theory

Faceted Search

202 full-text articles. Page 2 of 8.

Algorithmic Factorization Of Polynomials Over Number Fields, Christian Schulz 2017 Rose-Hulman Institute of Technology

Algorithmic Factorization Of Polynomials Over Number Fields, Christian Schulz

Mathematical Sciences Technical Reports (MSTR)

The problem of exact polynomial factorization, in other words expressing a polynomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of ...


From Simplest Recursion To The Recursion Of Generalizations Of Cross Polytope Numbers, Yutong Yang 2017 Kennesaw State University

From Simplest Recursion To The Recursion Of Generalizations Of Cross Polytope Numbers, Yutong Yang

Honors College Capstones and Theses

My research project involves investigations in the mathematical field of combinatorics. The research study will be based on the results of Professors Steven Edwards and William Griffiths, who recently found a new formula for the cross-polytope numbers. My topic will be focused on "Generalizations of cross-polytope numbers". It will include the proofs of the combinatorics results in Dr. Edwards and Dr. Griffiths' recently published paper. $E(n,m)$ and $O(n,m)$, the even terms and odd terms for Dr. Edward's original combinatorial expression, are two distinct combinatorial expressions that are in fact equal. But there is no obvious ...


Roman Domination In Complementary Prisms, Alawi I. Alhashim 2017 East Tennessee State University

Roman Domination In Complementary Prisms, Alawi I. Alhashim

Electronic Theses and Dissertations

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number ...


On The Reality Of Mathematics, Brendan Ortmann 2017 Southeastern University - Lakeland

On The Reality Of Mathematics, Brendan Ortmann

Selected Student Publications

Mathematics is an integral cornerstone of science and society at large, and its implications and derivations should be considered. That mathematics is frequently abstracted from reality is a notion not countered, but one must also think upon its physical basis as well. By segmenting mathematics into its different, abstract philosophies and real-world applications, this paper seeks to peer into the space that mathematics seems to fill; that is, to understand how and why it works. Under mathematical theory, Platonism, Nominalism, and Fictionalism are analyzed for their validity and their shortcomings, in addition to the evaluation of infinities and infinitesimals, to ...


On Vector-Valued Automorphic Forms On Bounded Symmetric Domains, Nadia Alluhaibi 2017 The University of Western Ontario

On Vector-Valued Automorphic Forms On Bounded Symmetric Domains, Nadia Alluhaibi

Electronic Thesis and Dissertation Repository

The objective of the study is to investigate the behaviour of the inner products of vector-valued Poincare series, for large weight, associated to submanifolds of a quotient of the complex unit ball and how vector-valued automorphic forms could be constructed via Poincare series. In addition, it provides a proof of that vector-valued Poincare series on an irreducible bounded symmetric domain span the space of vector-valued automorphic forms.


Rainbow Arithmetic Progressions, Steve Butler, Craig Erickson, Leslie Hogben, Kirsten Hogenson, Lucas Kramer, Richard Kramer, Jephian C. H. Lin, Ryan R. Martin, Derrick Stolee, Nathan Warnberg, Michael Young 2017 Iowa State University

Rainbow Arithmetic Progressions, Steve Butler, Craig Erickson, Leslie Hogben, Kirsten Hogenson, Lucas Kramer, Richard Kramer, Jephian C. H. Lin, Ryan R. Martin, Derrick Stolee, Nathan Warnberg, Michael Young

Leslie Hogben

In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of arithmetic progressions. For positive integers n and k, the expression aw([n]; k) denotes the smallest number of colors with which the integers f1; : : : ; ng can be colored and still guarantee there is a rainbow arithmetic progression of length k. We establish that aw([n]; 3) = (log n) and aw([n]; k) = n1o(1) for k 4. For positive integers n and k, the expression aw(Zn; k) denotes the smallest number of colors with which elements of the cyclic group of order n can be ...


On P-Adic Fields And P-Groups, Luis A. Sordo Vieira 2017 University of Kentucky

On P-Adic Fields And P-Groups, Luis A. Sordo Vieira

Theses and Dissertations--Mathematics

The dissertation is divided into two parts. The first part mainly treats a conjecture of Emil Artin from the 1930s. Namely, if f = a_1x_1^d + a_2x_2^d +...+ a_{d^2+1}x^d where the coefficients a_i lie in a finite unramified extension of a rational p-adic field, where p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms over finite fields and study the isotropicity of the system relative to the number of variables. We also study a variant of the classical Davenport constant of finite abelian groups and relate it to ...


Dynamical Systems And Zeta Functions Of Function Fields, Daniel Nichols 2017 University of Massachusetts Amherst

Dynamical Systems And Zeta Functions Of Function Fields, Daniel Nichols

Doctoral Dissertations

This doctoral dissertation concerns two problems in number theory. First, we examine a family of discrete dynamical systems in F_2[t] analogous to the 3x + 1 system on the positive integers. We prove a statistical result about the large-scale dynamics of these systems that is stronger than the analogous theorem in Z. We also investigate mx + 1 systems in rings of functions over a family of algebraic curves over F_2 and prove a similar result there.

Second, we describe some interesting properties of zeta functions of algebraic curves. Generally L-functions vanish only to the order required by their root number ...


Combinatorics Of Compositions, Meghann M. Gibson 2017 Georgia Southern University

Combinatorics Of Compositions, Meghann M. Gibson

Electronic Theses & Dissertations

Integer compositions and related enumeration problems have been extensively studied. The cyclic analogues of such questions, however, have significantly fewer results. In this thesis, we follow the cyclic construction of Flajolet and Soria to obtain generating functions for cyclic compositions and n-color cyclic compositions with various restrictions. With these generating functions we present some statistics and asymptotic formulas for the number of compositions and parts in such compositions. Combinatorial explanations are also provided for many of the enumerative observations presented.


Scaling Of Spectra Of Cantor-Type Measures And Some Number Theoretic Considerations, Isabelle Kraus 2017 University of Central Florida

Scaling Of Spectra Of Cantor-Type Measures And Some Number Theoretic Considerations, Isabelle Kraus

Honors in the Major Theses

We investigate some relations between number theory and spectral measures related to the harmonic analysis of a Cantor set. Specifically, we explore ways to determine when an odd natural number m generates a complete or incomplete Fourier basis for a Cantor-type measure with scale g.


Mathematics Education From A Mathematicians Point Of View, Nan Woodson Simpson 2016 University of Tennessee, Knoxville

Mathematics Education From A Mathematicians Point Of View, Nan Woodson Simpson

Masters Theses

This study has been written to illustrate the development from early mathematical learning (grades 3-8) to secondary education regarding the Fundamental Theorem of Arithmetic and the Fundamental Theorem of Algebra. It investigates the progression of the mathematics presented to the students by the current curriculum adopted by the Rhea County School System and the mathematics academic standards set forth by the State of Tennessee.


Explicit Formulae And Trace Formulae, Tian An Wong 2016 The Graduate Center, City University of New York

Explicit Formulae And Trace Formulae, Tian An Wong

All Dissertations, Theses, and Capstone Projects

In this thesis, motivated by an observation of D. Hejhal, we show that the explicit formulae of A. Weil for sums over zeroes of Hecke L-functions, via the Maass-Selberg relation, occur in the continuous spectral terms in the Selberg trace formula over various number fields. In Part I, we discuss the relevant parts of the trace formulae classically and adelically, developing the necessary representation theoretic background. In Part II, we show how show the explicit formulae intervene, using the classical formulation of Weil; then we recast this in terms of Weil distributions and the adelic formulation of Weil. As an ...


On The Free And G-Saturated Weight Monoids Of Smooth Affine Spherical Varieties For G=Sl(N), Won Geun Kim 2016 The Graduate Center, City University of New York

On The Free And G-Saturated Weight Monoids Of Smooth Affine Spherical Varieties For G=Sl(N), Won Geun Kim

All Dissertations, Theses, and Capstone Projects

Let $X$ be an affine algebraic variety over $\mathbb{C}$ equipped with an action of a connected reductive group $G$. The weight monoid $\Gamma(X)$ of $X$ is the set of isomorphism classes of irreducible representations of $G$ that occur in the coordinate ring $\mathbb{C}[X]$ of $X$. Losev has shown that if $X$ is a smooth affine spherical variety, that is, if $X$ is smooth and $\mathbb{C}[X]$ is multiplicity-free as a representation of $G$, then $\Gamma(X)$ determines $X$ up to equivariant automorphism.

Pezzini and Van Steirteghem have recently obtained a combinatorial characterization of the weight ...


Explicit Reciprocity Laws For Higher Local Fields, Jorge Florez 2016 The Graduate Center, City University of New York

Explicit Reciprocity Laws For Higher Local Fields, Jorge Florez

All Dissertations, Theses, and Capstone Projects

In this thesis we generalize to higher dimensional local fields the explicit reciprocity laws of Kolyvagin for the Kummer pairing associated to a formal group. The formulas obtained describe the values of the pairing in terms of multidimensional p-adic differentiation, the logarithm of the formal group, the generalized trace and the norm on Milnor K-groups.


Nullification Of Torus Knots And Links, Zachary S. Bettersworth 2016 Western Kentucky University

Nullification Of Torus Knots And Links, Zachary S. Bettersworth

Masters Theses & Specialist Projects

Knot nullification is an unknotting operation performed on knots and links that can be used to model DNA recombination moves of circular DNA molecules in the laboratory. Thus nullification is a biologically relevant operation that should be studied.

Nullification moves can be naturally grouped into two classes: coherent nullification, which preserves the orientation of the knot, and incoherent nullification, which changes the orientation of the knot. We define the coherent (incoherent) nullification number of a knot or link as the minimal number of coherent (incoherent) nullification moves needed to unknot any knot or link. This thesis concentrates on the study ...


P-Adic L-Functions And The Geometry Of Hida Families, Joseph Kramer-Miller 2016 Graduate Center, City University of New York

P-Adic L-Functions And The Geometry Of Hida Families, Joseph Kramer-Miller

All Dissertations, Theses, and Capstone Projects


A major theme in the theory of $p$-adic deformations of automorphic forms is how $p$-adic $L$-functions over eigenvarieties relate to the geometry of these eigenvarieties. In this talk we explain results in this vein for the ordinary part of the eigencurve (i.e. Hida families). We address how Taylor expansions of one variable $p$-adic $L$-functions varying over families can detect geometric phenomena: crossing components of a certain intersection multiplicity and ramification over the weight space. Our methods involve proving a converse to a result of Vatsal relating congruences between eigenforms to their algebraic special $L ...


Comparing Local Constants Of Ordinary Elliptic Curves In Dihedral Extensions, Sunil Chetty 2016 College of Saint Benedict/Saint John's University

Comparing Local Constants Of Ordinary Elliptic Curves In Dihedral Extensions, Sunil Chetty

Mathematics Faculty Publications

We establish, for a substantial class of elliptic curves, that the arithmetic local constants introduced by Mazur and Rubin agree with quotients of analytic root numbers.


The Evolution Of Cryptology, Gwendolyn Rae Souza 2016 California State University - San Bernardino

The Evolution Of Cryptology, Gwendolyn Rae Souza

Electronic Theses, Projects, and Dissertations

We live in an age when our most private information is becoming exceedingly difficult to keep private. Cryptology allows for the creation of encryptive barriers that protect this information. Though the information is protected, it is not entirely inaccessible. A recipient may be able to access the information by decoding the message. This possible threat has encouraged cryptologists to evolve and complicate their encrypting methods so that future information can remain safe and become more difficult to decode. There are various methods of encryption that demonstrate how cryptology continues to evolve through time. These methods revolve around different areas of ...


Mathematical Reasoning And The Inductive Process: An Examination Of The Law Of Quadratic Reciprocity, Nitish Mittal 2016 California State University - San Bernardino

Mathematical Reasoning And The Inductive Process: An Examination Of The Law Of Quadratic Reciprocity, Nitish Mittal

Electronic Theses, Projects, and Dissertations

This project investigates the development of four different proofs of the law of quadratic reciprocity, in order to study the critical reasoning process that drives discovery in mathematics. We begin with an examination of the first proof of this law given by Gauss. We then describe Gauss’ fourth proof of this law based on Gauss sums, followed by a look at Eisenstein’s geometric simplification of Gauss’ third proof. Finally, we finish with an examination of one of the modern proofs of this theorem published in 1991 by Rousseau. Through this investigation we aim to analyze the different strategies used ...


Counting Solutions To Discrete Non-Algebraic Equations Modulo Prime Powers, Abigail Mann 2016 Rose-Hulman Institute of Technology

Counting Solutions To Discrete Non-Algebraic Equations Modulo Prime Powers, Abigail Mann

Mathematical Sciences Technical Reports (MSTR)

As society becomes more reliant on computers, cryptographic security becomes increasingly important. Current encryption schemes include the ElGamal signature scheme, which depends on the complexity of the discrete logarithm problem. It is thought that the functions that such schemes use have inverses that are computationally intractable. In relation to this, we are interested in counting the solutions to a generalization of the discrete logarithm problem modulo a prime power. This is achieved by interpolating to p-adic functions, and using Hensel's lemma, or other methods in the case of singular lifting, and the Chinese Remainder Theorem.


Digital Commons powered by bepress