Open Access. Powered by Scholars. Published by Universities.®

Algebraic Geometry Commons

Open Access. Powered by Scholars. Published by Universities.®

169 Full-Text Articles 200 Authors 36874 Downloads 52 Institutions

All Articles in Algebraic Geometry

Faceted Search

169 full-text articles. Page 1 of 7.

Ideal Containments Under Flat Extensions And Interpolation On Linear Systems In P2, Solomon Akesseh 2017 University of Nebraska-Lincoln

Ideal Containments Under Flat Extensions And Interpolation On Linear Systems In P2, Solomon Akesseh

Dissertations, Theses, and Student Research Papers in Mathematics

Fat points and their ideals have stimulated a lot of research but this dissertation concerns itself with aspects of only two of them, broadly categorized here as, the ideal containments and polynomial interpolation problems.

Ein-Lazarsfeld-Smith and Hochster-Huneke cumulatively showed that for all ideals I in k[Pn], I(mn) ⊆ Im for all m ∈ N. Over the projective plane, we obtain I(4)< ⊆ I2. Huneke asked whether it was the case that I(3) ⊆ I2. Dumnicki, Szemberg and Tutaj-Gasinska show that if I is the saturated homogeneous radical ideal of the 12 points of the Hesse configuration, then ...


Descartes Comes Out Of The Closet, Nora E. Culik 2017 Vassar College

Descartes Comes Out Of The Closet, Nora E. Culik

Journal of Humanistic Mathematics

While “Descartes Comes Out of the Closet” is ostensibly about a young woman’s journey to Paris, the descriptive detail borrows language and images from Cartesian coordinate geometry, dualistic philosophy, neuroanatomy (the pineal), and projections of three dimensions onto planes. This mathematical universe is counterpointed in the natural language of the suppressed love story that locates the real in the human. Thus, at the heart of the story is the tension between competing notions of mathematics, i.e., as either an independent realm apart from history or as a culturally produced and historical set of practices. Of course, the central ...


College Algebra, Trigonometry, And Precalculus (Clayton), Chaogui Zhang, Scott Bailey, Billie May, Jelinda Spotorno, Kara Mullen 2017 Clayton State University

College Algebra, Trigonometry, And Precalculus (Clayton), Chaogui Zhang, Scott Bailey, Billie May, Jelinda Spotorno, Kara Mullen

Mathematics Grants Collections

This Grants Collection for College Algebra, Trigonometry, and Precalculus was created under a Round Five ALG Textbook Transformation Grant.

Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process.

Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials:

  • Linked Syllabus
  • Initial Proposal
  • Final Report


Counting Rational Points, Integral Points, Fields, And Hypersurfaces, Joseph Gunther 2017 The Graduate Center, City University of New York

Counting Rational Points, Integral Points, Fields, And Hypersurfaces, Joseph Gunther

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

This thesis comes in four parts, which can be read independently of each other.

In the first chapter, we prove a generalization of Poonen's finite field Bertini theorem, and use this to show that the obvious obstruction to embedding a curve in some smooth surface is the only obstruction over perfect fields, extending a result of Altman and Kleiman. We also prove a conjecture of Vakil and Wood on the asymptotic probability of hypersurface sections having a prescribed number of singularities.

In the second chapter, for a fixed base curve over a finite field of characteristic at least 5 ...


Klein Four Actions On Graphs And Sets, Darren B. Glass 2017 Gettysburg College

Klein Four Actions On Graphs And Sets, Darren B. Glass

Math Faculty Publications

We consider how a standard theorem in algebraic geometry relating properties of a curve with a (ℤ/2ℤ)2-action to the properties of its quotients generalizes to results about sets and graphs that admit (ℤ/2ℤ)2-actions.


Cox Processes For Visual Object Counting, Yongming Ma 2017 Portland State University

Cox Processes For Visual Object Counting, Yongming Ma

Student Research Symposium

We present a model that utilizes Cox processes and CNN classifiers in order to count the number of instances of an object in an image. Poisson processes are well suited to events that occur randomly in space, like the location of objects in an image, as well as to the task of counting. Mixed Poisson processes also offer increased flexibility, however they do not easily scale with image size: they typically require O(n3) computation time and O(n2) storage, where n is the number of pixels. To mitigate this problem, we employ Kronecker algebra which takes advantage of the ...


Student-Created Test Sheets, Samuel Laderach 2017 Bowling Green State University

Student-Created Test Sheets, Samuel Laderach

Honors Projects

Assessment plays a necessary role in the high school mathematics classroom, and testing is a major part of assessment. Students often struggle with mathematics tests and examinations due to math and test anxiety, a lack of student learning, and insufficient and inefficient student preparation. Practice tests, teacher-created review sheets, and student-created test sheets are ways in which teachers can help increase student performance, while ridding these detrimental factors. Student-created test sheets appear to be the most efficient strategy, and this research study examines the effects of their use in a high school mathematics classroom.


On Vector-Valued Automorphic Forms On Bounded Symmetric Domains, Nadia Alluhaibi 2017 The University of Western Ontario

On Vector-Valued Automorphic Forms On Bounded Symmetric Domains, Nadia Alluhaibi

Electronic Thesis and Dissertation Repository

The objective of the study is to investigate the behaviour of the inner products of vector-valued Poincare series, for large weight, associated to submanifolds of a quotient of the complex unit ball and how vector-valued automorphic forms could be constructed via Poincare series. In addition, it provides a proof of that vector-valued Poincare series on an irreducible bounded symmetric domain span the space of vector-valued automorphic forms.


Polygons, Pillars And Pavilions: Discovering Connections Between Geometry And Architecture, Sean Patrick Madden 2017 University High School

Polygons, Pillars And Pavilions: Discovering Connections Between Geometry And Architecture, Sean Patrick Madden

Journal of Catholic Education

Crowning the second semester of geometry, taught within a Catholic middle school, the author's students explored connections between the geometry of regular polygons and architecture of local buildings. They went on to explore how these principles apply famous buildings around the world such as the monuments of Washington, D.C. and the elliptical piazza of Saint Peter's Basilica at Vatican City within Rome, Italy.


Session A-3: Three-Act Math Tasks, Lindsey Herlehy 2017 Illinois Mathematics and Science Academy

Session A-3: Three-Act Math Tasks, Lindsey Herlehy

Professional Learning Day

Participants will engage in a Three-Act Math task highlighting the application of properties of geometrical figures. Developed by Dan Meyer, an innovative and highly regarded mathematics instructor, Three-Act Math tasks utilize pedagogical skills that elicit student curiosity, collaboration and questioning. By posing a mathematical problem through active storytelling, this instructional approach redefines real-world mathematics and clarifies the role that a student plays in the learning process. Participants will be given multiple resources where they can access Three-Act Math tasks appropriate for upper elementary grades through Algebra and Geometry courses.


Drawing A Triangle On The Thurston Model Of Hyperbolic Space, Curtis D. Bennett, Blake Mellor, Patrick D. Shanahan 2017 Loyola Marymount University

Drawing A Triangle On The Thurston Model Of Hyperbolic Space, Curtis D. Bennett, Blake Mellor, Patrick D. Shanahan

Blake Mellor

In looking at a common physical model of the hyperbolic plane, the authors encountered surprising difficulties in drawing a large triangle. Understanding these difficulties leads to an intriguing exploration of the geometry of the Thurston model of the hyperbolic plane. In this exploration we encounter topics ranging from combinatorics and Pick’s Theorem to differential geometry and the Gauss-Bonnet Theorem.


Epimorphisms And Boundary Slopes Of 2–Bridge Knots, Jim Hoste, Patrick D. Shanahan 2017 Pitzer College

Epimorphisms And Boundary Slopes Of 2–Bridge Knots, Jim Hoste, Patrick D. Shanahan

Patrick Shanahan

In this article we study a partial ordering on knots in S3 where K1≥K2 if there is an epimorphism from the knot group of K1 onto the knot group of K2 which preserves peripheral structure. If K1 is a 2–bridge knot and K1≥K2, then it is known that K2 must also be 2–bridge. Furthermore, Ohtsuki, Riley and Sakuma give a construction which, for a given 2–bridge knot Kp∕q, produces infinitely many 2–bridge knots Kp′/q′ with Kp′∕q′≥Kp∕q ...


Linked Exact Triples Of Triangulated Categories And A Calculus Of T-Structures, Michael Berg 2017 Loyola Marymount University

Linked Exact Triples Of Triangulated Categories And A Calculus Of T-Structures, Michael Berg

Michael Berg

We introduce a new formalism of exact triples of triangulated categories arranged in certain types of diagrams. We prove that these arrangements are well-behaved relative to the process of gluing and ungluing t-structures defined on the indicated categories and we connect our con. structs to· a problem (from number theory) involving derived categories. We also briefly address a possible connection with a result of R. Thomason.


Random Tropical Curves, Magda L. Hlavacek 2017 Harvey Mudd College

Random Tropical Curves, Magda L. Hlavacek

HMC Senior Theses

In the setting of tropical mathematics, geometric objects are rich with inherent combinatorial structure. For example, each polynomial $p(x,y)$ in the tropical setting corresponds to a tropical curve; these tropical curves correspond to unbounded graphs embedded in $\R^2$. Each of these graphs is dual to a particular subdivision of its Newton polytope; we classify tropical curves by combinatorial type based on these corresponding subdivisions. In this thesis, we aim to gain an understanding of the likeliness of the combinatorial type of a randomly chosen tropical curve by using methods from polytope geometry. We focus on tropical curves ...


Tropical Derivation Of Cohomology Ring Of Heavy/Light Hassett Spaces, Shiyue Li 2017 Harvey Mudd College

Tropical Derivation Of Cohomology Ring Of Heavy/Light Hassett Spaces, Shiyue Li

HMC Senior Theses

The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geometry. The emergent field of tropical geometry gives new views and combinatorial tools for treating these classical problems. In particular, we study the cohomology of heavy/light Hassett spaces, moduli spaces of heavy/light weighted stable curves, denoted as $\calm_{g, w}$ for a particular genus $g$ and a weight vector $w \in (0, 1]^n$ using tropical geometry. We survey and build on the work of \citet{Cavalieri2014}, which proved that tropical compactification is a \textit{wonderful} compactification of the complement of hyperplane arrangement for ...


Chow's Theorem, Yohannes D. Asega 2017 Colby College

Chow's Theorem, Yohannes D. Asega

Honors Theses

We present the proof of Chow's theorem as a corollary to J.P.-Serre's GAGA correspondence theorem after introducing the necessary prerequisites. Finally, we discuss consequences of Chow's theorem.


A Journey To Fuzzy Rings, Brett T. Ernst 2017 Georgia Southern University

A Journey To Fuzzy Rings, Brett T. Ernst

Electronic Theses & Dissertations

Enumerative geometry is a very old branch of algebraic geometry. In this thesis, we will describe several classical problems in enumerative geometry and their solutions in order to motivate the introduction of tropical geometry. Finally, fuzzy rings, a powerful algebraic framework for tropical and algebraic geometry is introduced.


Computation Of Real Radical Ideals By Semidefinite Programming And Iterative Methods, Fei Wang 2016 The University of Western Ontario

Computation Of Real Radical Ideals By Semidefinite Programming And Iterative Methods, Fei Wang

Electronic Thesis and Dissertation Repository

Systems of polynomial equations with approximate real coefficients arise frequently as models in applications in science and engineering. In the case of a system with finitely many real solutions (the $0$ dimensional case), an equivalent system generates the so-called real radical ideal of the system. In this case the equivalent real radical system has only real (i.e., no non-real) roots and no multiple roots. Such systems have obvious advantages in applications, including not having to deal with a potentially large number of non-physical complex roots, or with the ill-conditioning associated with roots with multiplicity. There is a corresponding, but ...


On The Perfect Reconstruction Of The Structure Of Dynamic Networks, Alan Veliz-Cuba 2016 University of Dayton

On The Perfect Reconstruction Of The Structure Of Dynamic Networks, Alan Veliz-Cuba

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Non-Commutative Automorphisms Of Bounded Non-Commutative Domains, John E. McCarthy, Richard M. Timoney 2016 Washington University in St Louis

Non-Commutative Automorphisms Of Bounded Non-Commutative Domains, John E. Mccarthy, Richard M. Timoney

Mathematics Faculty Publications

We establish rigidity (or uniqueness) theorems for non-commutative (NC) automorphisms that are natural extensions of classical results of H. Cartan and are improvements of recent results. We apply our results to NC domains consisting of unit balls of rectangular matrices.


Digital Commons powered by bepress