Open Access. Powered by Scholars. Published by Universities.®

Algebraic Geometry Commons

Open Access. Powered by Scholars. Published by Universities.®

373 Full-Text Articles 400 Authors 154,391 Downloads 80 Institutions

All Articles in Algebraic Geometry

Faceted Search

373 full-text articles. Page 1 of 15.

Equisingular Approximation Of Analytic Germs, Aftab Yusuf Patel 2021 The University of Western Ontario

Equisingular Approximation Of Analytic Germs, Aftab Yusuf Patel

Electronic Thesis and Dissertation Repository

This thesis deals with the problem of approximating germs of real or complex analytic spaces by Nash or algebraic germs. In particular, we investigate the problem of approximating analytic germs in various ways while preserving the Hilbert-Samuel function, which is of importance in the resolution of singularities. We first show that analytic germs that are complete intersections can be arbitrarily closely approximated by algebraic germs which are complete intersections with the same Hilbert-Samuel function. We then show that analytic germs whose local rings are Cohen-Macaulay can be arbitrarily closely approximated by Nash germs whose local rings are Cohen- Macaulay and ...


Acceleration Skinning: Kinematics-Driven Cartoon Effects For Articulated Characters, Niranjan Kalyanasundaram 2021 Clemson University

Acceleration Skinning: Kinematics-Driven Cartoon Effects For Articulated Characters, Niranjan Kalyanasundaram

All Theses

Secondary effects are key to adding fluidity and style to animation. This thesis introduces the idea of “Acceleration Skinning” following a recent well-received technique, Velocity Skinning, to automatically create secondary motion in character animation by modifying the standard pipeline for skeletal rig skinning. These effects, which animators may refer to as squash and stretch or drag, attempt to create an illusion of inertia. In this thesis, I extend the Velocity Skinning technique to include acceleration for creating a wider gamut of cartoon effects. I explore three new deformers that make use of this Acceleration Skinning framework: followthrough, centripetal stretch, and ...


Cache-Friendly, Modular And Parallel Schemes For Computing Subresultant Chains, Mohammadali Asadi 2021 The University of Western Ontario

Cache-Friendly, Modular And Parallel Schemes For Computing Subresultant Chains, Mohammadali Asadi

Electronic Thesis and Dissertation Repository

The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library.

Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a ...


Equivariant Smoothings Of Cusp Singularities, ANGELICA SIMONETTI 2021 University of Massachusetts Amherst

Equivariant Smoothings Of Cusp Singularities, Angelica Simonetti

Doctoral Dissertations

Let $p \in X$ be the germ of a cusp singularity and let $\iota$ be an antisymplectic involution, that is an involution free on $X\setminus \{p\}$ and such that there exists a nowhere vanishing holomorphic 2-form $\Omega$ on $X\setminus \{p\}$ for which $\iota^*(\Omega)=-\Omega$. We prove that a sufficient condiition for such a singularity equipped with an antisymplectic involution to be equivariantly smoothable is the existence of a Looijenga (or anticanonical) pair $(Y,D)$ that admits an involution free on $Y\setminus D$ and that reverses the orientation of $D$.


Using Lie Sphere Geometry To Study Dupin Hypersurfaces In R^N, Thomas E. Cecil 2021 College of the Holy Cross

Using Lie Sphere Geometry To Study Dupin Hypersurfaces In R^N, Thomas E. Cecil

Mathematics Department Faculty Scholarship

A hypersurface M in Rn or Sn is said to be Dupin if along each curvature surface, the corresponding principal curvature is constant. A Dupin hypersurface is said to be proper Dupin if each principal curvature has constant multiplicity on M, i.e., the number of distinct principal curvatures is constant on M. The notions of Dupin and proper Dupin hypersurfaces in Rn or Sn can be generalized to the setting of Lie sphere geometry, and these properties are easily seen to be invariant under Lie sphere transformations. This makes Lie sphere geometry an effective setting ...


Distribution Of The P-Torsion Of Jacobian Groups Of Regular Matroids, Sergio R. Zapata Ceballos 2021 The University of Western Ontairo

Distribution Of The P-Torsion Of Jacobian Groups Of Regular Matroids, Sergio R. Zapata Ceballos

Electronic Thesis and Dissertation Repository

Given a regular matroid $M$ and a map $\lambda\colon E(M)\to \N$, we construct a regular matroid $M_\lambda$. Then we study the distribution of the $p$-torsion of the Jacobian groups of the family $\{M_\lambda\}_{\lambda\in\N^{E(M)}}$. We approach the problem by parameterizing the Jacobian groups of this family with non-trivial $p$-torsion by the $\F_p$-rational points of the configuration hypersurface associated to $M$. In this way, we reduce the problem to counting points over finite fields. As a result, we obtain a closed formula for the proportion of these groups ...


Searching For New Relations Among The Eilenberg-Zilber Maps, Owen T. Abma 2021 Western University

Searching For New Relations Among The Eilenberg-Zilber Maps, Owen T. Abma

Undergraduate Student Research Internships Conference

The goal of this project was to write a computer program that would aid in the search for relations among the Eilenberg-Zilber maps, which relate to simplicial objects in algebraic topology. This presentation outlines the process of writing this program, the challenges faced along the way, and the final results of the project.


Studies Of Subvarieties Of Classical Complex Algebraic Geometry, Wenzhe Wang 2021 Western University

Studies Of Subvarieties Of Classical Complex Algebraic Geometry, Wenzhe Wang

Undergraduate Student Research Internships Conference

My project in this USRI program is to study subvariety of classical complex algebraic geometry. I observed the orbit of elements in the unit sphere in space ℂ² ⊗ ℂ², the structure of unit sphere of ℂ² ⊗ ℂ². After this, I tried to generalize the result to ℂ^n ⊗ ℂ^n.


From Mathematics To Medicine: A Practical Primer On Topological Data Analysis (Tda) And The Development Of Related Analytic Tools For The Functional Discovery Of Latent Structure In Fmri Data, Andrew Salch, Adam Regalski, Hassan Abdallah, Raviteja Suryadevara, Michael J. Catanzaro, Vaibhav A. Diwadkar 2021 Wayne State University

From Mathematics To Medicine: A Practical Primer On Topological Data Analysis (Tda) And The Development Of Related Analytic Tools For The Functional Discovery Of Latent Structure In Fmri Data, Andrew Salch, Adam Regalski, Hassan Abdallah, Raviteja Suryadevara, Michael J. Catanzaro, Vaibhav A. Diwadkar

Mathematics Faculty Research Publications

fMRI is the preeminent method for collecting signals from the human brain in vivo, for using these signals in the service of functional discovery, and relating these discoveries to anatomical structure. Numerous computational and mathematical techniques have been deployed to extract information from the fMRI signal. Yet, the application of Topological Data Analyses (TDA) remain limited to certain sub-areas such as connectomics (that is, with summarized versions of fMRI data). While connectomics is a natural and important area of application of TDA, applications of TDA in the service of extracting structure from the (non-summarized) fMRI data itself are heretofore nonexistent ...


Elliptic Curves And Their Practical Applications, Henry H. Hayden IV 2021 Missouri State University

Elliptic Curves And Their Practical Applications, Henry H. Hayden Iv

MSU Graduate Theses

Finding rational points that satisfy functions known as elliptic curves induces a finitely-generated abelian group. Such functions are powerful tools that were used to solve Fermat's Last Theorem and are used in cryptography to send private keys over public systems. Elliptic curves are also useful in factoring and determining primality.


Probability Distributions For Elliptic Curves In The Cgl Hash Function, Dhruv Bhatia, Kara Fagerstrom, Max Watson 2021 Brown University

Probability Distributions For Elliptic Curves In The Cgl Hash Function, Dhruv Bhatia, Kara Fagerstrom, Max Watson

Mathematical Sciences Technical Reports (MSTR)

Hash functions map data of arbitrary length to data of predetermined length. Good hash functions are hard to predict, making them useful in cryptography. We are interested in the elliptic curve CGL hash function, which maps a bitstring to an elliptic curve by traversing an inputdetermined path through an isogeny graph. The nodes of an isogeny graph are elliptic curves, and the edges are special maps betwixt elliptic curves called isogenies. Knowing which hash values are most likely informs us of potential security weaknesses in the hash function. We use stochastic matrices to compute the expected probability distributions of the ...


A Cone Conjecture For Log Calabi-Yau Surfaces, Jennifer Li 2021 University of Massachusetts Amherst

A Cone Conjecture For Log Calabi-Yau Surfaces, Jennifer Li

Doctoral Dissertations

In 1993, Morrison conjectured that the automorphism group of a Calabi-Yau 3-fold acts on its nef cone with a rational polyhedral fundamental domain. In this thesis, we prove a version of this conjecture for log Calabi-Yau surfaces. In particular, for a generic log Calabi-Yau surface with singular boundary, the monodromy group acts on the nef effective cone with a rational polyhedral fundamental domain. In addition, the automorphism group of the unique surface with a split mixed Hodge structure in each deformation type acts on the nef effective cone with a rational polyhedral fundamental domain. We also prove that, given a ...


On Elliptic Curves, Montana S. Miller 2021 Missouri State University

On Elliptic Curves, Montana S. Miller

MSU Graduate Theses

An elliptic curve over the rational numbers is given by the equation y2 = x3+Ax+B. In our thesis, we study elliptic curves. It is known that the set of rational points on the elliptic curve form a finitely generated abelian group induced by the secant-tangent addition law. We present an elementary proof of associativity using Maple. We also present a relatively concise proof of the Mordell-Weil Theorem.


Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes 2021 King Abdullah University of Science and Technology

Lecture 03: Hierarchically Low Rank Methods And Applications, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the ...


Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman 2021 University of Arkansas, Fayetteville

Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman

Mathematical Sciences Spring Lecture Series

Opening remarks for the 46th Annual Mathematical Sciences Spring Lecture Series at the University of Arkansas, Fayetteville.


On The Tropicalization Of Lines Onto Tropical Quadrics, Natasha Crepeau 2021 Harvey Mudd College

On The Tropicalization Of Lines Onto Tropical Quadrics, Natasha Crepeau

HMC Senior Theses

Tropical geometry uses the minimum and addition operations to consider tropical versions of the curves, surfaces, and more generally the zero set of polynomials, called varieties, that are the objects of study in classical algebraic geometry. One known result in classical geometry is that smooth quadric surfaces in three-dimensional projective space, $\mathbb{P}^3$, are doubly ruled, and those rulings form a disjoint union of conics in $\mathbb{P}^5$. We wish to see if the same result holds for smooth tropical quadrics. We use the Fundamental Theorem of Tropical Algebraic Geometry to outline an approach to studying how lines ...


A Tropical Approach To The Brill-Noether Theory Over Hurwitz Spaces, Kaelin Cook-Powell 2021 University of Kentucky

A Tropical Approach To The Brill-Noether Theory Over Hurwitz Spaces, Kaelin Cook-Powell

Theses and Dissertations--Mathematics

The geometry of a curve can be analyzed in many ways. One way of doing this is to study the set of all divisors on a curve of prescribed rank and degree, known as a Brill-Noether variety. A sequence of results, starting in the 1980s, answered several fundamental questions about these varieties for general curves. However, many of these questions are still unanswered if we restrict to special families of curves. This dissertation has three main goals. First, we examine Brill-Noether varieties for these special families and provide combinatorial descriptions of their irreducible components. Second, we provide a natural generalization ...


Towards Tropical Psi Classes, Jawahar Madan 2021 Claremont Colleges

Towards Tropical Psi Classes, Jawahar Madan

HMC Senior Theses

To help the interested reader get their initial bearings, I present a survey of prerequisite topics for understanding the budding field of tropical Gromov-Witten theory. These include the language and methods of enumerative geometry, an introduction to tropical geometry and its relation to classical geometry, an exposition of toric varieties and their correspondence to polyhedral fans, an intuitive picture of bundles and Euler classes, and finally an introduction to the moduli spaces of n-pointed stable rational curves and their tropical counterparts.


Introduce Gâteaux And Frêchet Derivatives In Riesz Spaces, Abdullah Aydın, Erdal Korkmaz 2020 Mus Alparslan University

Introduce Gâteaux And Frêchet Derivatives In Riesz Spaces, Abdullah Aydın, Erdal Korkmaz

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the Gâteaux and Frêchet differentiations of functions on Riesz space are introduced without topological structure. Thus, we aim to study Gâteaux and Frêchet differentiability functions in vector lattice by developing topology-free techniques, and also, we give some relations with other kinds of operators.


So How Were The Tents Of Israel Placed? A Bible-Inspired Geometric Problem, Julio Urenda, Olga Kosheleva, Vladik Kreinovich 2020 The University of Texas at El Paso

So How Were The Tents Of Israel Placed? A Bible-Inspired Geometric Problem, Julio Urenda, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In one of the Biblical stories, prophet Balaam blesses the tents of Israel for being good. But what can be so good about the tents? A traditional Rabbinical interpretation is that the placement of the tents provided full privacy: from each entrance, one could not see what is happening at any other entrance. This motivates a natural geometric question: how exactly were these tents placed? In this paper, we provide an answer to this question.


Digital Commons powered by bepress