Open Access. Powered by Scholars. Published by Universities.®

Algebra Commons

Open Access. Powered by Scholars. Published by Universities.®

1,232 Full-Text Articles 1,229 Authors 580,166 Downloads 131 Institutions

All Articles in Algebra

Faceted Search

1,232 full-text articles. Page 1 of 49.

Bbt Side Mold Assy, Bill Hemphill 2022 East Tennessee State University

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds ...


Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs 2022 University of Nebraska at Omaha

Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs

Student Research and Creative Activity Fair

The University of Omaha math department's Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester's end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes.

Now there are three difficulty tiers to POW problems, roughly corresponding ...


The Zariski-Riemann Space As A Universal Model For The Birational Geometry Of A Function Field, Giovan Battista Pignatti Morano di Custoza 2022 The Graduate Center, City University of New York

The Zariski-Riemann Space As A Universal Model For The Birational Geometry Of A Function Field, Giovan Battista Pignatti Morano Di Custoza

Dissertations, Theses, and Capstone Projects

Given a function field $K$ over an algebraically closed field $k$, we propose to use the Zariski-Riemann space $\ZR (K/k)$ of valuation rings as a universal model that governs the birational geometry of the field extension $K/k$. More specifically, we find an exact correspondence between ad-hoc collections of open subsets of $\ZR (K/k)$ ordered by quasi-refinements and the category of normal models of $K/k$ with morphisms the birational maps. We then introduce suitable Grothendieck topologies and we develop a sheaf theory on $\ZR (K/k)$ which induces, locally at once, the sheaf theory of each normal ...


On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields, Ben Kuehnert, Geneva Schlafly, Zecheng Yi 2022 University of Rochester

On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields, Ben Kuehnert, Geneva Schlafly, Zecheng Yi

Rose-Hulman Undergraduate Mathematics Journal

It is well known that two elliptic curves are isogenous if and only if they have same number of rational points. In fact, isogenous curves can even have isomorphic groups of rational points in certain cases. In this paper, we consolidate all the current literature on this relationship and give a extensive classification of the conditions in which this relationship arises. First we prove two ordinary isogenous elliptic curves have isomorphic groups of rational points when they have the same $j$-invariant. Then, we extend this result to certain isogenous supersingular elliptic curves, namely those with equal $j$-invariant of ...


An Overview Of Monstrous Moonshine, Catherine E. Riley 2022 Cedarville University

An Overview Of Monstrous Moonshine, Catherine E. Riley

Channels: Where Disciplines Meet

The Conway-Norton monstrous moonshine conjecture set off a quest to discover the connection between the Monster and the J-function. The goal of this paper is to give an overview of the components of the conjecture, the conjecture itself, and some of the ideas that led to its solution. Special focus is given to Klein's J-function.


John Horton Conway: The Man And His Knot Theory, Dillon Ketron 2022 East Tennessee State University

John Horton Conway: The Man And His Knot Theory, Dillon Ketron

Electronic Theses and Dissertations

John Horton Conway was a British mathematician in the twentieth century. He made notable achievements in fields such as algebra, number theory, and knot theory. He was a renowned professor at Cambridge University and later Princeton. His contributions to algebra include his discovery of the Conway group, a group in twenty-four dimensions, and the Conway Constellation. He contributed to number theory with his development of the surreal numbers. His Game of Life earned him long-lasting fame. He contributed to knot theory with his developments of the Conway polynomial, Conway sphere, and Conway notation.


The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles 2022 California State University - San Bernardino

The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles

Electronic Theses, Projects, and Dissertations

This thesis is centered around the construction and analysis of the principal arithmetic surface (3, 5) over Q. By adjoining the two symbols i,j, where i2 = 3, j2 = 5, such that ij = -ji, I can produce a quaternion algebra over Q. I use this quaternion algebra to find a discrete subgroup of SL2(R), which I identify with isometries of the hyperbolic plane. From this quaternion algebra, I produce a large list of matrices and apply them via Mobius transformations to the point (0, 2), which is the center of my Dirichlet domain. This list of ...


Lattice Reduction Algorithms, Juan Ortega 2022 California State University, San Bernardino

Lattice Reduction Algorithms, Juan Ortega

Electronic Theses, Projects, and Dissertations

The purpose of this thesis is to propose and analyze an algorithm that follows
similar steps of Guassian Lattice Reduction Algorithm in two-dimensions and applying
them to three-dimensions. We start off by discussing the importance of cryptography in
our day to day lives. Then we dive into some linear algebra and discuss specific topics that
will later help us in understanding lattice reduction algorithms. We discuss two lattice
problems: the shortest vector problem and the closest vector problem. Then we introduce
two types of lattice reduction algorithms: Guassian Lattice Reduction in two-dimensions
and the LLL Algortihm. We illustrate how both ...


Modern Theory Of Copositive Matrices, Yuqiao Li 2022 William & Mary

Modern Theory Of Copositive Matrices, Yuqiao Li

Undergraduate Honors Theses

Copositivity is a generalization of positive semidefiniteness. It has applications in theoretical economics, operations research, and statistics. An $n$-by-$n$ real, symmetric matrix $A$ is copositive (CoP) if $x^T Ax \ge 0$ for any nonnegative vector $x \ge 0.$ The set of all CoP matrices forms a convex cone. A CoP matrix is ordinary if it can be written as the sum of a positive semidefinite (PSD) matrix and a symmetric nonnegative (sN) matrix. When $n < 5,$ all CoP matrices are ordinary. However, recognizing whether a given CoP matrix is ordinary and determining an ordinary decomposition (PSD + sN) is still an unsolved problem. Here, we give an overview on modern theory of CoP matrices, talk about our progress on the ordinary recognition and decomposition problem, and emphasis the graph theory aspect of ordinary CoP matrices.


Quantum Dimension Polynomials: A Networked-Numbers Game Approach, Nicholas Gaubatz 2022 Murray State University

Quantum Dimension Polynomials: A Networked-Numbers Game Approach, Nicholas Gaubatz

Honors College Theses

The Networked-Numbers Game--a mathematical "game'' played on a simple graph--is incredibly accessible and yet surprisingly rich in content. The Game is known to contain deep connections to the finite-dimensional simple Lie algebras over the complex numbers. On the other hand, Quantum Dimension Polynomials (QDPs)--enumerative expressions traditionally understood through root systems--corresponding to the above Lie algebras are complicated to derive and often inaccessible to undergraduates. In this thesis, the Networked-Numbers Game is defined and some known properties are presented. Next, the significance of the QDPs as a method to count combinatorially interesting structures is relayed. Ultimately, a novel closed-form expression ...


Symmetric Generation, Ana Gonzalez 2022 California State University, San Bernardino

Symmetric Generation, Ana Gonzalez

Electronic Theses, Projects, and Dissertations

We will examine progenitors. We start with progenitors of the form $m^{*n} : N$ where $m^{*n}$ is a free group and $N$ is a permutation group of degree $n$. But, $m^{*n} : N$ is a group of infinite order so we will factor by the necessary relations to get finite homomorphic images. These groups are constructed through the manual double coset enumeration method. We will examine how to construct progenitors for wreath products.


The Decomposition Of The Space Of Algebraic Curvature Tensors, Katelyn Sage Risinger 2022 California State University - San Bernardino

The Decomposition Of The Space Of Algebraic Curvature Tensors, Katelyn Sage Risinger

Electronic Theses, Projects, and Dissertations

We decompose the space of algebraic curvature tensors (ACTs) on a finite dimensional, real inner product space under the action of the orthogonal group into three inequivalent and irreducible subspaces: the real numbers, the space of trace-free symmetric bilinear forms, and the space of Weyl tensors. First, we decompose the space of ACTs using two short exact sequences and a key result, Lemma 3.5, which allows us to express one vector space as the direct sum of the others. This gives us a decomposition of the space of ACTs as the direct sum of three subspaces, which at this ...


Homomorphic Images And Related Topics, Alejandro Martinez 2022 California State University - San Bernardino

Homomorphic Images And Related Topics, Alejandro Martinez

Electronic Theses, Projects, and Dissertations

In this thesis, we have demonstrated our method of writing symmetric presentations of permutation progenitors, finding monomial representations and symmetric presentations of monomial progenitors. We have also explained how various types of additional relations are found. We have discovered original symmetric presentations and original constructions of numerous groups.


Sequential Deformations Of Hadamard Matrices And Commuting Squares, Shuler G. Hopkins 2022 University of Tennessee, Knoxville

Sequential Deformations Of Hadamard Matrices And Commuting Squares, Shuler G. Hopkins

Doctoral Dissertations

In this dissertation, we study analytic and sequential deformations of commuting squares of finite dimensional von Neumann algebras, with applications to the theory of complex Hadamard matrices. The main goal is to shed some light on the structure of the algebraic manifold of spin model commuting squares (i.e., commuting squares based on complex Hadamard matrices), in the neighborhood of the standard commuting square (i.e., the commuting square corresponding to the Fourier matrix). We prove two types of results: Non-existence results for deformations in certain directions in the tangent space to the algebraic manifold of commuting squares (chapters 3 ...


Fock And Hardy Spaces: Clifford Appell Case, Daniel Alpay, Kamal Diki, Irene Sabadini 2022 Chapman University

Fock And Hardy Spaces: Clifford Appell Case, Daniel Alpay, Kamal Diki, Irene Sabadini

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we study a specific system of Clifford–Appell polynomials and, in particular, their product. Moreover, we introduce a new family of quaternionic reproducing kernel Hilbert spaces in the framework of Fueter regular functions. The construction is based on a general idea which allows us to obtain various function spaces by specifying a suitable sequence of real numbers. We focus on the Fock and Hardy cases in this setting, and we study the action of the Fueter mapping and its range.


Varieties Of Nonassociative Rings Of Bol-Moufang Type, Ronald E. White 2022 Northern Michigan University

Varieties Of Nonassociative Rings Of Bol-Moufang Type, Ronald E. White

All NMU Master's Theses

In this paper we investigate Bol-Moufang identities in a more general and very natural setting, \textit{nonassociative rings}.

We first introduce and define common algebras. We then explore the varieties of nonassociative rings of Bol-Moufang type. We explore two separate cases, the first where we consider binary rings, rings in which we make no assumption of it's structure. The second case we explore are rings in which, $2x=0$ implies $x=0$.


Semantic Completeness Of Intuitionistic Predicate Logic In A Fully Constructive Meta-Theory, Ian Ray 2022 Western Kentucky University

Semantic Completeness Of Intuitionistic Predicate Logic In A Fully Constructive Meta-Theory, Ian Ray

Masters Theses & Specialist Projects

A constructive proof of the semantic completeness of intuitionistic predicate logic is explored using set-generated complete Heyting Algebra. We work in a constructive set theory that avoids impredicative axioms; for this reason the result is not only intuitionistic but fully constructive. We provide background that makes the thesis accessible to the uninitiated.


Quandles That Are Knot Quandles, Jason Haskell 2022 Northern Michigan University

Quandles That Are Knot Quandles, Jason Haskell

All NMU Master's Theses

There are many papers that introduce the relationship between knots and quandles which are written tersely and focus mainly on applications or implications. Here, we will take time to explain in depth how to derive quandles from oriented knots. Starting with an rigorous introduction to what a knot is and what a quandle is, we will also define the Fundamental Quandle of a knot and the relationship between colorings of a knot and the homomorphisms from an arbitrary quandle to a Fundamental Quandle. Then using this foundation, we will examine two sets of knots that produce quandles that contain subquandles ...


The Enumeration Of Minimum Path Covers Of Trees, Merielyn Sher 2022 William & Mary

The Enumeration Of Minimum Path Covers Of Trees, Merielyn Sher

Undergraduate Honors Theses

A path cover of a tree T is a collection of induced paths of T that are vertex disjoint and cover all the vertices of T. A minimum path cover (MPC) of T is a path cover with the minimum possible number of paths, and that minimum number is called the path cover number of T. A tree can have just one or several MPC's. Prior results have established equality between the path cover number of a tree T and the largest possible multiplicity of an eigenvalue that can occur in a symmetric matrix whose graph is that tree ...


Application Of Linear Algebra Within The High School Curriculum: Designing Activities To Stimulate An Interest In Upper-Level Math, Shelby Castle 2022 University of Nebraska - Lincoln

Application Of Linear Algebra Within The High School Curriculum: Designing Activities To Stimulate An Interest In Upper-Level Math, Shelby Castle

Honors Theses, University of Nebraska-Lincoln

This senior project outlines potential lecture activities for a guest speaker or teacher in a high school classroom to present interesting applications of linear algebra. These applications are meant to be pertinent to things students at this age level are already learning or are interested in. The activities are designed such that the ideas of upper-level math are introduced in a very guided and non-intense way. The intent of the activities is mostly applications and interesting results rather than mathematical lecturing or instruction.

The high school level courses explored in this project are chemistry, economics, and health/physical education. For ...


Digital Commons powered by bepress