Ramanujan–Sato Series For 1/Π,
2023
The University of Texas Rio Grande Valley
Ramanujan–Sato Series For 1/Π, Timothy Huber, Daniel Schultz, Dongxi Ye
School of Mathematical and Statistical Sciences Faculty Publications and Presentations
We compute Ramanujan–Sato series systematically in terms of Thompson series and their modular equations. A complete list of rational and quadratic series corresponding to singular values of the parameters is derived.
Euler Archive Spotlight,
2023
University of Washington, Tacoma
Euler Archive Spotlight, Erik R. Tou
Euleriana
A survey of two translations posted to the Euler Archive in 2022.
Using Bloom's Taxonomy For Math Outreach Within And Outside The Classroom,
2023
Benedictine University
Using Bloom's Taxonomy For Math Outreach Within And Outside The Classroom, Manmohan Kaur
Journal of Humanistic Mathematics
Not everyone is a great artist, but we don’t often hear, “I dislike art.” Most people are able to appreciate visual arts, music and sports, without necessarily excelling in it themselves. On the other hand, the phrase “I dislike math” is widely prevalent. This is especially ironic in our current society, where mathematics affects our day-to-day activities in essential ways such as e-commerce and e-mail. This paper describes the opportunity to popularize mathematics by focusing on its fun and creative aspects, and illustrates this opportunity through a brief discussion of interdisciplinary topics that expose the beauty, elegance and value of …
Meertens Number And Its Variations,
2022
International Business Machines
Meertens Number And Its Variations, Chai Wah Wu
Communications on Number Theory and Combinatorial Theory
In 1998, Bird introduced Meertens numbers as numbers that are invariant under a map similar to the Gödel encoding. In base 10, the only known Meertens number is 81312000. We look at some properties of Meertens numbers and consider variations of this concept. In particular, we consider variations of Meertens numbers where there is a finite time algorithm to decide whether such numbers exist, exhibit infinite families of these variations and provide bounds on parameters needed for their existence.
(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries,
2022
RECITS Laboratory
(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries, Hacène Belbachir, Amine Belkhir, Ihab-Eddine Djellas
Applications and Applied Mathematics: An International Journal (AAM)
In the present paper, we evaluate the permanent and determinant of some Toeplitz-Hessenberg matrices with generalized Fibonacci and generalized Lucas numbers as entries.We develop identities involving sums of products of generalized Fibonacci numbers and generalized Lucas numbers with multinomial coefficients using the matrix structure, and then we present an application of the determinant of such matrices.
A Comparison Of Cryptographic Methods,
2022
Liberty University
A Comparison Of Cryptographic Methods, Christopher Gilmore
Senior Honors Theses
While elliptic curve cryptography and quantum cryptography are significantly different branches of cryptography, they provide a suitable reference point for comparison of the value of developing methods used in the present and investing in methods to be used in the future. Elliptic curve cryptography is quite common today, as it is generally secure and efficient. However, as the field of cryptography advances, the value of quantum cryptography’s inherent security from its basic properties should be considered, as a fully realized quantum cryptosystem has the potential to be quite powerful. Ultimately, it is of critical importance to determine the value of …
(Si10-062) Comprehensive Study On Methodology Of Orthogonal Interleavers,
2022
Pranveer Singh Institue of Technology
(Si10-062) Comprehensive Study On Methodology Of Orthogonal Interleavers, Priyanka Agarwal, Shivani Dixit, M. Shukla, Gaurish Joshi
Applications and Applied Mathematics: An International Journal (AAM)
Interleaving permutes the data bits by employing a user defined sequence to reduce burst error which at times exceeds the minimum hamming distance. It serves as the sole medium to distinguish user data in the overlapping channel and is the heart of Interleave Division Multiple Access (IDMA) scheme. Versatility of interleavers relies on various design parameters such as orthogonality, correlation, latency and performance parameters like bit error rate (BER), memory occupancy and computation complexity. In this paper, a comprehensive study of interleaving phenomenon and discussion on numerous interleavers is presented. Also, the BER performance of interleavers using IDMA scheme is …
The Local Lifting Problem For Curves With Quaternion Actions,
2022
The Graduate Center, City University of New York
The Local Lifting Problem For Curves With Quaternion Actions, George Mitchell
Dissertations, Theses, and Capstone Projects
The lifting problem asks whether one can lift Galois covers of curves defined over positive characteristic to Galois covers of curves over characteristic zero. The lifting problem has an equivalent local variant, which asks if a Galois extension of complete discrete valuation rings over positive characteristic, with algebraically closed residue field, can be lifted to characteristic zero. In this dissertation, we content ourselves with the study of the local lifting problem when the prime is 2, and the Galois group of the extension is the group of quaternions. In this case, it is known that certain quaternion extensions cannot be …
Proving Dirichlet's Theorem On Arithmetic Progressions,
2022
Western University
Proving Dirichlet's Theorem On Arithmetic Progressions, Owen T. Abma
Undergraduate Student Research Internships Conference
First proved by German mathematician Dirichlet in 1837, this important theorem states that for coprime integers a, m, there are an infinite number of primes p such that p = a (mod m). This is one of many extensions of Euclid’s theorem that there are infinitely many prime numbers. In this paper, we will formulate a rather elegant proof of Dirichlet’s theorem using ideas from complex analysis and group theory.
Reduction Of L-Functions Of Elliptic Curves Modulo Integers,
2022
The University of Western Ontario
Reduction Of L-Functions Of Elliptic Curves Modulo Integers, Félix Baril Boudreau
Electronic Thesis and Dissertation Repository
Let $\mathbb{F}_q$ be a finite field of size $q$, where $q$ is a power of a prime $p \geq 5$. Let $C$ be a smooth, proper, and geometrically connected curve over $\mathbb{F}_q$. Consider an elliptic curve $E$ over the function field $K$ of $C$ with nonconstant $j$-invariant. One can attach to $E$ its $L$-function $L(T,E/K)$, which is a generating function that contains information about the reduction types of $E$ at the different places of $K$. The $L$-function of $E/K$ was proven to be a polynomial in $\mathbb{Z}[T]$.
In 1985, Schoof devised an algorithm to compute the zeta function of an …
The Hfd Property In Orders Of A Number Field,
2022
Clemson University
The Hfd Property In Orders Of A Number Field, Grant Moles
All Theses
We will examine orders R in a number field K. In particular, we will look at how the generalized class number of R relates to the class number of its integral closure R. We will then apply this to the case when K is a quadratic field to produce a more specific relation. After this, we will focus on orders R which are half-factorial domains (HFDs), in which the irreducible factorization of any element α∈R has fixed length. We will determine two cases in which R is an HFD if and only if its ring of …
Efficiency Of Homomorphic Encryption Schemes,
2022
Clemson University
Efficiency Of Homomorphic Encryption Schemes, Kyle Yates
All Theses
In 2009, Craig Gentry introduced the first fully homomorphic encryption scheme using bootstrapping. In the 13 years since, a large amount of research has gone into improving efficiency of homomorphic encryption schemes. This includes implementing leveled homomorphic encryption schemes for practical use, which are schemes that allow for some predetermined amount of additions and multiplications that can be performed on ciphertexts. These leveled schemes have been found to be very efficient in practice. In this thesis, we will discuss the efficiency of various homomorphic encryption schemes. In particular, we will see how to improve sizes of parameter choices in homomorphic …
On The Iwasawa Invariants Of Nonordinary Modular Forms,
2022
University of Massachusetts Amherst
On The Iwasawa Invariants Of Nonordinary Modular Forms, Rylan J. Gajek-Leonard
Doctoral Dissertations
We extend known results on the behavior of Iwasawa invariants attached to Mazur-Tate elements for p-nonordinary modular forms of weight k=2 to higher weight modular forms with a_p=0. This is done by using a decomposition of the p-adic L-function due to R. Pollack in order to construct explicit lifts of Mazur-Tate elements to the full Iwasawa algebra. We then study the behavior of Iwasawa invariants upon projection to finite layers, allowing us to express the invariants of Mazur-Tate elements in terms of those coming from plus/minus p-adic L-functions. Our results combine with work of Pollack and Weston to relate the …
Unomaha Problem Of The Week (2021-2022 Edition),
2022
University of Nebraska at Omaha
Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs
UNO Student Research and Creative Activity Fair
The University of Omaha math department's Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester's end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes.
Now there are three difficulty tiers to POW problems, roughly corresponding to …
On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields,
2022
University of Rochester
On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields, Ben Kuehnert, Geneva Schlafly, Zecheng Yi
Rose-Hulman Undergraduate Mathematics Journal
It is well known that two elliptic curves are isogenous if and only if they have same number of rational points. In fact, isogenous curves can even have isomorphic groups of rational points in certain cases. In this paper, we consolidate all the current literature on this relationship and give a extensive classification of the conditions in which this relationship arises. First we prove two ordinary isogenous elliptic curves have isomorphic groups of rational points when they have the same $j$-invariant. Then, we extend this result to certain isogenous supersingular elliptic curves, namely those with equal $j$-invariant of either 0 …
An Overview Of Monstrous Moonshine,
2022
Cedarville University
An Overview Of Monstrous Moonshine, Catherine E. Riley
Channels: Where Disciplines Meet
The Conway-Norton monstrous moonshine conjecture set off a quest to discover the connection between the Monster and the J-function. The goal of this paper is to give an overview of the components of the conjecture, the conjecture itself, and some of the ideas that led to its solution. Special focus is given to Klein's J-function.
Structure Of Number Theoretic Graphs,
2022
Rose-Hulman Institute of Technology
Structure Of Number Theoretic Graphs, Lee Trent
Mathematical Sciences Technical Reports (MSTR)
The tools of graph theory can be used to investigate the structure
imposed on the integers by various relations. Here we investigate two
kinds of graphs. The first, a square product graph, takes for its vertices
the integers 1 through n, and draws edges between numbers whose product
is a square. The second, a square product graph, has the same vertex set,
and draws edges between numbers whose sum is a square.
We investigate the structure of these graphs. For square product
graphs, we provide a rather complete characterization of their structure as
a union of disjoint complete graphs. For …
Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations,
2022
Southern Adventist University
Nessie Notation: A New Tool In Sequential Substitution Systems And Graph Theory For Summarizing Concatenations, Colton Davis
Student Research
While doing research looking for ways to categorize causal networks generated by Sequential Substitution Systems, I created a new notation to compactly summarize concatenations of integers or strings of integers, including infinite sequences of these, in the same way that sums, products, and unions of sets can be summarized. Using my method, any sequence of integers or strings of integers with a closed-form iterative pattern can be compactly summarized in just one line of mathematical notation, including graphs generated by Sequential Substitution Systems, many Primitive Pythagorean Triplets, and various Lucas sequences including the Fibonacci sequence and the sequence of square …
John Horton Conway: The Man And His Knot Theory,
2022
East Tennessee State University
John Horton Conway: The Man And His Knot Theory, Dillon Ketron
Electronic Theses and Dissertations
John Horton Conway was a British mathematician in the twentieth century. He made notable achievements in fields such as algebra, number theory, and knot theory. He was a renowned professor at Cambridge University and later Princeton. His contributions to algebra include his discovery of the Conway group, a group in twenty-four dimensions, and the Conway Constellation. He contributed to number theory with his development of the surreal numbers. His Game of Life earned him long-lasting fame. He contributed to knot theory with his developments of the Conway polynomial, Conway sphere, and Conway notation.
Symmetric Presentations Of Finite Groups And Related Topics,
2022
California State University - San Bernardino
Symmetric Presentations Of Finite Groups And Related Topics, Samar Mikhail Kasouha
Electronic Theses, Projects, and Dissertations
A progenitor is an infinite semi-direct product of the form m∗n : N, where N ≤ Sn and m∗n : N is a free product of n copies of a cyclic group of order m. A progenitor of this type, in particular 2∗n : N, gives finite non-abelian simple groups and groups involving these, including alternating groups, classical groups, and the sporadic group. We have conducted a systematic search of finite homomorphic images of numerous progenitors. In this thesis we have presented original symmetric presentations of the sporadic simple groups, M12, J1 as homomorphic images of the progenitor 2∗12 : …