Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

12130 Full-Text Articles 11214 Authors 2204663 Downloads 219 Institutions

All Articles in Mathematics

Faceted Search

12130 full-text articles. Page 1 of 327.

Elimination For Systems Of Algebraic Differential Equations, Richard Gustavson 2017 The Graduate Center, City University of New York

Elimination For Systems Of Algebraic Differential Equations, Richard Gustavson

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

We develop new upper bounds for several effective differential elimination techniques for systems of algebraic ordinary and partial differential equations. Differential elimination, also known as decoupling, is the process of eliminating a fixed subset of unknown functions from a system of differential equations in order to obtain differential algebraic consequences of the original system that do not depend on that fixed subset of unknowns. A special case of differential elimination, which we study extensively, is the question of consistency, that is, if the given system of differential equations has a solution. We first look solely at the ``algebraic data" of ...


Roman Domination In Complementary Prisms, Alawi I. Alhashim 2017 East Tennessee State University

Roman Domination In Complementary Prisms, Alawi I. Alhashim

Electronic Theses and Dissertations

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number ...


An Exploratory Study Of Fifth-Grade Students’ Reasoning About The Relationship Between Fractions And Decimals When Using Number Line-Based Virtual Manipulatives, Scott Smith 2017 Utah State University

An Exploratory Study Of Fifth-Grade Students’ Reasoning About The Relationship Between Fractions And Decimals When Using Number Line-Based Virtual Manipulatives, Scott Smith

All Graduate Theses and Dissertations

Understanding the relationship between fractions and decimals is an important step in developing an overall understanding of rational numbers. Research has demonstrated the feasibility of technology in the form of virtual manipulatives for facilitating students’ meaningful understanding of rational number concepts. This exploratory dissertation study was conducted for the two closely related purposes: first, to investigate a sample of fifth-grade students’ reasoning regarding the relationship between fractions and decimals for fractions with terminating decimal representations while using virtual manipulative incorporating parallel number lines; second, to investigate the affordances of the virtual manipulatives for supporting the students’ reasoning about the decimal-fraction ...


Fractional Zero Forcing Via Three-Color Forcing Games, Leslie Hogben, Kevin F. Palmowski, David E. Roberson, Michael Young 2017 Iowa State University

Fractional Zero Forcing Via Three-Color Forcing Games, Leslie Hogben, Kevin F. Palmowski, David E. Roberson, Michael Young

Leslie Hogben

An r-fold analogue of the positive semidefinite zero forcing process that is carried out on the r-blowup of a graph is introduced and used to define the fractional positive semidefinite forcing number. Properties of the graph blowup when colored with a fractional positive semidefinite forcing set are examined and used to define a three-color forcing game that directly computes the fractional positive semidefinite forcing number of a graph. We develop a fractional parameter based on the standard zero forcing process and it is shown that this parameter is exactly the skew zero forcing number with a three-color approach. This approach ...


Minimum Rank Of Skew-Symmetric Matrices Described By A Graph, Mary Allison, Elizabeth Bodine, Luz Maria DeAlba, Joyati Debnath, Laura DeLoss, Colin Garnett, Jason Grout, Leslie Hogben, Bokhee Im, Hana Kim, Reshmi Nair, Olga Pryporova, Kendrick Savage, Bryan Shader, Amy Wangsness Wehe 2017 University of Wyoming

Minimum Rank Of Skew-Symmetric Matrices Described By A Graph, Mary Allison, Elizabeth Bodine, Luz Maria Dealba, Joyati Debnath, Laura Deloss, Colin Garnett, Jason Grout, Leslie Hogben, Bokhee Im, Hana Kim, Reshmi Nair, Olga Pryporova, Kendrick Savage, Bryan Shader, Amy Wangsness Wehe

Leslie Hogben

The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply ...


Lies, Statistics, Mathematics And The Truth, Nathan L. Tintle 2017 Dordt College

Lies, Statistics, Mathematics And The Truth, Nathan L. Tintle

Faculty Work: Comprehensive List

"Recognizing a key distinction between mathematics and statistics is helpful in understanding how we know if a statement is true."

Posting about deductive and inductive reasoning­­­­­­­­ from In All Things - an online hub committed to the claim that the life, death, and resurrection of Jesus Christ has implications for the entire world.

http://inallthings.org/lies-statistics-mathematics-and-the-truth/


The Copositive Completion Problem: Unspecified Diagonal Entries, Leslie Hogben 2017 Iowa State University

The Copositive Completion Problem: Unspecified Diagonal Entries, Leslie Hogben

Leslie Hogben

In [L. Hogben, C.R. Johnson, R. Reams, The copositive matrix completion problem, Linear Algebra Appl. 408 (2005) 207–211] it was shown that any partial (strictly) copositive matrix all of whose diagonal entries are specified can be completed to a (strictly) copositive matrix. In this note we show that every partial strictly copositive matrix (possibly with unspecified diagonal entries) can be completed to a strictly copositive matrix, but there is an example of a partial copositive matrix with an unspecified diagonal entry that cannot be completed to a copositive matrix.


The Symmetric M-Matrix And Symmetric Inverse M-Matrix Completion Problems, Leslie Hogben 2017 Iowa State University

The Symmetric M-Matrix And Symmetric Inverse M-Matrix Completion Problems, Leslie Hogben

Leslie Hogben

The symmetric M-matrix and symmetric M0-matrix completion problems are solved and results of Johnson and Smith [Linear Algebra Appl. 290 (1999) 193] are extended to solve the symmetric inverse M-matrix completion problem: (1) A pattern (i.e., a list of positions in an n×n matrix) has symmetric M-completion (i.e., every partial symmetric M-matrix specifying the pattern can be completed to a symmetric M-matrix) if and only if the principal subpattern R determined by its diagonal is permutation similar to a pattern that is block diagonal with each diagonal block complete, or, in graph theoretic terms, if and only ...


Potentially Eventually Exponentially Positive Sign Patterns, Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera, Antonio Ochoa 2017 Columbia College

Potentially Eventually Exponentially Positive Sign Patterns, Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera, Antonio Ochoa

Leslie Hogben

We introduce the study of potentially eventually exponentially positive (PEEP) sign patterns and establish several results using the connections between these sign patterns and the potentially eventually positive (PEP) sign patterns. It is shown that the problem of characterizing PEEP sign patterns is not equivalent to that of characterizing PEP sign patterns. A characterization of all 2×2 and 3×3 PEEP sign patterns is given.


Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben 2017 Iowa State University

Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben

Leslie Hogben

This paper studies the recursive robust principal components analysis problem. If the outlier is the signal-of-interest, this problem can be interpreted as one of recursively recovering a time sequence of sparse vectors, St, in the presence of large but structured noise, Lt. The structure that we assume on Lt is that Lt is dense and lies in a low-dimensional subspace that is either fixed or changes slowly enough. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background (Lt) from moving foreground objects (St) on-the-fly. To solve the above ...


Spectrally Arbitrary Patterns: Reducibility And The 2n Conjecture For N = 5, Luz M. DeAlba, Irvin R. Hentzel, Leslie Hogben, Judith McDonald, Rana Mikkelson, Olga Pryporova, Bryan Shader, Kevin N. Vander Meulen 2017 Drake University

Spectrally Arbitrary Patterns: Reducibility And The 2n Conjecture For N = 5, Luz M. Dealba, Irvin R. Hentzel, Leslie Hogben, Judith Mcdonald, Rana Mikkelson, Olga Pryporova, Bryan Shader, Kevin N. Vander Meulen

Leslie Hogben

A sign pattern Z (a matrix whose entries are elements of {+, −, 0}) is spectrally arbitrary if for any self-conjugate spectrum there is a real matrix with sign pattern Z having the given spectrum. Spectrally arbitrary sign patterns were introduced in [J.H. Drew, C.R. Johnson, D.D. Olesky, P. van den Driessche, Spectrally arbitrary patterns, Linear Algebra Appl. 308 (2000) 121–137], where it was (incorrectly) stated that if a sign pattern Z is reducible and each of its irreducible components is a spectrally arbitrary sign pattern, then Z is a spectrally arbitrary sign pattern, and it was conjectured ...


The Copositive Completion Problem, Leslie Hogben, Charles R. Johnson, Robert Reams 2017 Iowa State University

The Copositive Completion Problem, Leslie Hogben, Charles R. Johnson, Robert Reams

Leslie Hogben

An n × n real symmetric matrix A is called (strictly) copositive if xTAx ⩾ 0 (>0) whenever x ∈ Rn satisfies x ⩾ 0 (x ⩾ 0 and x ≠ 0). The (strictly) copositive matrix completion problem asks which partial (strictly) copositive matrices have a completion to a (strictly) copositive matrix. We prove that every partial (strictly) copositive matrix has a (strictly) copositive matrix completion and give a lower bound on the values used in the completion. We answer affirmatively an open question whether an n × n copositive matrix A = (aij) with all diagonal entries aii = 1 stays copositive if each off-diagonal entry of A ...


The Minimum Rank Of Symmetric Matrices Described By A Graph: A Survey, Shaun M. Fallat, Leslie Hogben 2017 University of Regina

The Minimum Rank Of Symmetric Matrices Described By A Graph: A Survey, Shaun M. Fallat, Leslie Hogben

Leslie Hogben

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper surveys the current state of knowledge on the problem of determining the minimum rank of a graph and related issues.


Orthogonal Representations, Minimum Rank, And Graph Complements, Leslie Hogben 2017 Iowa State University

Orthogonal Representations, Minimum Rank, And Graph Complements, Leslie Hogben

Leslie Hogben

Orthogonal representations are used to show that complements of certain sparse graphs have (positive semidefinite) minimum rank at most 4. This bound applies to the complement of a 2-tree and to the complement of a unicyclic graph. Hence for such graphs, the sum of the minimum rank of the graph and the minimum rank of its complement is at most two more than the order of the graph. The minimum rank of the complement of a 2-tree is determined exactly.


Minimum Rank Problems, Leslie Hogben 2017 Iowa State University

Minimum Rank Problems, Leslie Hogben

Leslie Hogben

A graph describes the zero–nonzero pattern of a family of matrices, with the type of graph (undirected or directed, simple or allowing loops) determining what type of matrices (symmetric or not necessarily symmetric, diagonal entries free or constrained) are described by the graph. The minimum rank problem of the graph is to determine the minimum among the ranks of the matrices in this family; the determination of maximum nullity is equivalent. This problem has been solved for simple trees [P.M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra Appl. 248 (1996) 303–316, C.R. Johnson, A. Leal ...


On The Difference Between The Maximum Multiplicity And Path Cover Number For Tree-Like Graphs, Francesco Barioli, Shaun Fallat, Leslie Hogben 2017 Carleton University

On The Difference Between The Maximum Multiplicity And Path Cover Number For Tree-Like Graphs, Francesco Barioli, Shaun Fallat, Leslie Hogben

Leslie Hogben

For a given undirected graph G, the maximum multiplicity of G is defined to be the largest multiplicity of an eigenvalue over all real symmetric matrices A whose (i, j)th entry is non-zero whenever i ≠ j and {i, j} is an edge in G. The path cover number of G is the minimum number of vertex-disjoint paths occurring as induced subgraphs of G that cover all the vertices of G. We derive a formula for the path cover number of a vertex-sum of graphs, and use it to prove that the vertex-sum of so-called non-deficient graphs is non-deficient. For ...


Path Cover Number, Maximum Nullity, And Zero Forcing Number Of Oriented Graphs And Other Simple Digraphs, Adam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox, Leslie Hogben, Jason Hu, Katrina Jacobs, Kathryn Manternach, Travis Peters, Nathan Warnberg, Michael Young 2017 Saint Olaf College

Path Cover Number, Maximum Nullity, And Zero Forcing Number Of Oriented Graphs And Other Simple Digraphs, Adam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox, Leslie Hogben, Jason Hu, Katrina Jacobs, Kathryn Manternach, Travis Peters, Nathan Warnberg, Michael Young

Leslie Hogben

An oriented graph is a simple digraph obtained from a simple graph by choosing exactly one of the two arcs (u,v)(u,v) or (v,u)(v,u) to replace each edge {u,v}{u,v}. A simple digraph describes the zero-nonzero pattern of off-diagonal entries of a family of (not necessarily symmetric) matrices. The minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number and path cover number are related parameters. We establish bounds on the range of possible values of all ...


Minimum Rank, Maximum Nullity And Zero Forcing Number For Selected Graph Families, Edgard Almodovar, Laura DeLoss, Leslie Hogben, Kirsten Hogenson, Kaitlyn Murphy, Travis Peters, Camila A. Ramírez 2017 University of Puerto Rico, Río Piedras Campus

Minimum Rank, Maximum Nullity And Zero Forcing Number For Selected Graph Families, Edgard Almodovar, Laura Deloss, Leslie Hogben, Kirsten Hogenson, Kaitlyn Murphy, Travis Peters, Camila A. Ramírez

Leslie Hogben

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ij-th entry (for i≠j) is nonzero whenever {i,j}{i,j} is an edge in G and is zero otherwise. Maximum nullity is taken over the same set of matrices, and the sum of maximum nullity and minimum rank is the order of the graph. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. This paper defines the graph families ciclos and estrellas and ...


Rational Realization Of Maximum Eigenvalue Multiplicity Of Symmetric Tree Sign Patterns, Atoshi Chowdhury, Leslie Hogben, Jude Melancon, Rana Mikkelson 2017 Princeton University

Rational Realization Of Maximum Eigenvalue Multiplicity Of Symmetric Tree Sign Patterns, Atoshi Chowdhury, Leslie Hogben, Jude Melancon, Rana Mikkelson

Leslie Hogben

A sign pattern is a matrix whose entries are elements of {+, −, 0}; it describes the set of real matrices whose entries have the signs in the pattern. A graph (that allows loops but not multiple edges) describes the set of symmetric matrices having a zero-nonzero pattern of entries determined by the absence or presence of edges in the graph. DeAlba et al. [L.M. DeAlba, T.L. Hardy, I.R. Hentzel, L. Hogben, A. Wangsness, Minimum rank and maximum eigenvalue multiplicity of symmetric tree sign patterns, Linear Algebra Appl., in press, doi:10.1016/j.laa.2006.02.018.] gave ...


On Completion Problems For Various Classes Of P-Matrices, John Bowers, Job Evers, Leslie Hogben, Steve Shaner, Karyn Snider, Amy Wangsness 2017 Grinnell College

On Completion Problems For Various Classes Of P-Matrices, John Bowers, Job Evers, Leslie Hogben, Steve Shaner, Karyn Snider, Amy Wangsness

Leslie Hogben

A P-matrix is a real square matrix having every principal minor positive, and a Fischer matrix is a P-matrix that satisfies Fischer’s inequality for all principal submatrices. In this paper, all patterns of positions for n × n matrices, n ⩽ 4, are classified as to whether or not every partial Π-matrix can be completed to a Π-matrix for Π any of the classes positive P-, nonnegative P-, or Fischer matrices. Also, all symmetric patterns for 5 × 5 matrices are classified as to completion of partial Fischer matrices, and all but two such patterns are classified as to positive P- or ...


Digital Commons powered by bepress