Open Access. Powered by Scholars. Published by Universities.®

Geometry and Topology Commons

Open Access. Powered by Scholars. Published by Universities.®

583 Full-Text Articles 620 Authors 101076 Downloads 79 Institutions

All Articles in Geometry and Topology

Faceted Search

583 full-text articles. Page 1 of 20.

Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg 2017 Oakland University

Mathematical Description And Mechanistic Reasoning: A Pathway Toward Stem Integration, Paul J. Weinberg

Journal of Pre-College Engineering Education Research (J-PEER)

Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith’s (2007) characterization of mathematical description of scientific phenomena as ‘‘bootstrapping,’’ where negotiating the relationship between target phenomena and represented relations is fundamental to learning. In addition, the development of mathematical representation presents a viable pathway towards STEM integration. In this study, participants responded to an assessment of mechanistic reasoning while cognitive ...


The Closure Operation As The Foundation Of Topology, Nicholas A. Scoville 2017 Ursinus College

The Closure Operation As The Foundation Of Topology, Nicholas A. Scoville

Topology

No abstract provided.


Conference Program, University of Dayton 2017 University of Dayton

Conference Program, University Of Dayton

Summer Conference on Topology and Its Applications

Document provides a list of the sessions, speakers, workshops, and committees of the 32nd Summer Conference on Topology and Its Applications.


Introduction To Classical Field Theory, Charles G. Torre 2017 Department of Physics, Utah State University

Introduction To Classical Field Theory, Charles G. Torre

Charles G. Torre

This is an introduction to classical field theory. Topics treated include: Klein-Gordon field, electromagnetic field, scalar electrodynamics, Dirac field, Yang-Mills field, gravitational field, Noether theorems relating symmetries and conservation laws, spontaneous symmetry breaking, Lagrangian and Hamiltonian formalisms. This is version 1.1, released in June 2017.


Intercusp Geodesics And Cusp Shapes Of Fully Augmented Links, Rochy Flint 2017 The Graduate Center, City University of New York

Intercusp Geodesics And Cusp Shapes Of Fully Augmented Links, Rochy Flint

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

We study the geometry of fully augmented link complements in the 3-sphere by looking at their link diagrams. We extend the method introduced by Thistlethwaite and Tsvietkova to fully augmented links and define a system of algebraic equations in terms of parameters coming from edges and crossings of the link diagrams. Combining it with the work of Purcell, we show that the solutions to these algebraic equations are related to the cusp shapes of fully augmented link complements. As an application we use the cusp shapes to study the commensurability classes of fully augmented links.


Turaev Surfaces And Toroidally Alternating Knots, Seungwon Kim 2017 The Graduate Center, City University of New York

Turaev Surfaces And Toroidally Alternating Knots, Seungwon Kim

All Graduate Works by Year: Dissertations, Theses, and Capstone Projects

In this thesis, we study knots and links via their alternating diagrams on closed orientable surfaces. Every knot or link has such a diagram by a construction of Turaev, which is called the Turaev surface of the link. Links that have an alternating diagram on a torus were defined by Adams as toroidally alternating. For a toroidally alternating link, the minimal genus of its Turaev surface may be greater than one. Hence, these surfaces provide different topological measures of how far a link is from being alternating.

First, we classify link diagrams with Turaev genus one and two in terms ...


Enriched Topology And Asymmetry, Stephen Rodabaugh, Jeffrey T. Denniston, Austin Melton 2017 Youngstown State University

Enriched Topology And Asymmetry, Stephen Rodabaugh, Jeffrey T. Denniston, Austin Melton

Summer Conference on Topology and Its Applications

Mathematically modeling the question of how to satisfactorily compare, in many-valued ways, both bitstrings and the predicates which they might satisfy-a surprisingly intricate question when the conjunction of predicates need not be commutative-applies notions of enriched categories and enriched functors. Particularly relevant is the notion of a set enriched by a po-groupoid, which turns out to be a many-valued preordered set, along with enriched functors extended as to be "variable-basis". This positions us to model the above question by constructing the notion of topological systems enriched by many-valued preorders, systems whose associated extent spaces motivate the notion of topological spaces ...


Balanced And Functionally Balanced P-Groups, Menachem Shlossberg 2017 University of Udine

Balanced And Functionally Balanced P-Groups, Menachem Shlossberg

Summer Conference on Topology and Its Applications

In relation to Itzkowitz's problem, we show that a c-bounded P-group is balanced if and only if it is functionally balanced. We prove that for an arbitrary P-group, being functionally balanced is equivalent to being strongly functionally balanced. A special focus is given to the uniform free topological group defined over a uniform P-space. In particular, we show that this group is (functionally) balanced precisely when its subsets Bn, consisting of words of length at most n, are all (resp., functionally) balanced.


Entropy In Topological Groups, Part 2, Dikran Dikranjan 2017 University of Udine

Entropy In Topological Groups, Part 2, Dikran Dikranjan

Summer Conference on Topology and Its Applications

Entropy was introduced first in thermodynamics and statistical mechanics, as well as information theory. In the last sixty years entropy made its way also in topology, ergodic theory, as well as other branches of mathematics as algebra, geometry and number theory where dynamical systems appear in one way or another.

Roughly speaking, entropy is a non-negative real number or infinity assigned to a "selfmap" T of a "space" X, where the "space" X can be a topological or uniform space, a measure space, an abstract or topological group (or vector space) or just a set. The "selfmap" T can be ...


On A Construction Of Some Class Of Metric Spaces, Dariusz Bugajewski 2017 Adam Mickiewicz University of Poznan

On A Construction Of Some Class Of Metric Spaces, Dariusz Bugajewski

Summer Conference on Topology and Its Applications

In this talk we are going to describe Sz´az’s construction of some class of metric spaces. Most of all we will analyze topological properties of metric spaces obtained by using Sz´az’s construction. In particular, we provide necessary and sufficient conditions for completeness of metric spaces obtained in this way. Moreover, we will discuss the relation between Sz´az’s construction and the “linking construction”. A particular attention will be drawn to the “floor” metric, the analysis of which provides some interesting observations.


Disjoint Infinity Borel Functions, Daniel Hathaway 2017 University of Denver

Disjoint Infinity Borel Functions, Daniel Hathaway

Summer Conference on Topology and Its Applications

Consider the statement that every uncountable set of reals can be surjected onto R by a Borel function. This is implied by the statement that every uncountable set of reals has a perfect subset. It is also implied by a new statement D which we will discuss: for each real a there is a Borel function fa : RtoR and for each function g : RtoR there is a countable set G(g) of reals such that the following is true: for each a in R and for each function g : R to R, if fa is disjoint from g ...


On The Chogoshvili Homology Theory Of Continuous Maps Of Compact Spaces, Anzor Beridze, Vladimer Baladze 2017 Batumi Shota Rustaveli State University

On The Chogoshvili Homology Theory Of Continuous Maps Of Compact Spaces, Anzor Beridze, Vladimer Baladze

Summer Conference on Topology and Its Applications

In this paper an exact homology functor from the category MorC of continuous maps of compact Hausdorff spaces to the category LES of long exact sequences of abelian groups is defined (cf. [2], [3], [5]). This functor is an extension of the Hu homology theory, which is uniquely defined on the category of continuous maps of finite CW complexes and is constructed without the relative homology groups [9]. To define the given homology functor we use the Chogoshvili construction of projective homology theory [7], [8]. For each continuous map f:X → Y of compact spaces, using the notion of ...


Liouville Numbers And One-Sided Ergodic Hilbert Transformations, David Constantine, Joanna Furno 2017 Wesleyan University

Liouville Numbers And One-Sided Ergodic Hilbert Transformations, David Constantine, Joanna Furno

Summer Conference on Topology and Its Applications

We examine one-sided ergodic Hilbert transforms for irrational circle rotations and some mean-zero functions. Our approach uses continued fraction expansions to specify rotations by Liouville numbers for which the transformation has everywhere convergence or divergence.


Relationships Between Topological Properties Of X And Algebraic Properties Of Intermediate Rings A(X), Joshua Sack 2017 California State University, Long Beach

Relationships Between Topological Properties Of X And Algebraic Properties Of Intermediate Rings A(X), Joshua Sack

Summer Conference on Topology and Its Applications

A topological property is a property invariant under homeomorphism, and an algebraic property of a ring is a property invariant under ring isomorphism. Let C(X) be the ring of real-valued continuous functions on a Tychonoff space X, let C*(X) ⊆ C(X) be the subring of those functions that are bounded, and call a ring A(X) an intermediate ring if C*(X) ⊆ A(X) ⊆ C(X). For a class Q of intermediate rings, an algebraic property P describes a topological property T among Q if for all A(X), B(Y) ∈ Q if A(X) and B(Y ...


A New Class Of Dendrites Having Unique Second Symmetric Product, David Maya, José G. Anaya, Fernando Orozco Zitli 2017 Universidad Autonoma del Estado de Mexico

A New Class Of Dendrites Having Unique Second Symmetric Product, David Maya, José G. Anaya, Fernando Orozco Zitli

Summer Conference on Topology and Its Applications

The second symmetric product of a continuum X, F2(X), is the hyperspace consisting of all nonempty subsets of X having at most two points. A continuum X has unique hyperspace F2(X) provided that each continuum Y satisfying that F2(X) and F2(Y) are homeomorphic must be homeomorphic to X. In this talk, a new class of dendrites having unique F2(X) will be presented.


Compactness Via Adherence Dominators, Bhamini M. P. Nayar, Terrence A. Edwards, James E. Joseph, Myung H. Kwack 2017 Morgan State University

Compactness Via Adherence Dominators, Bhamini M. P. Nayar, Terrence A. Edwards, James E. Joseph, Myung H. Kwack

Summer Conference on Topology and Its Applications

This talk is based on a joint work by T. A. Edwards, J. E. Joseph, M. H. Kwack and B. M. P. Nayar that apperared in the Journal of Advanced studies in Topology, Vol. 5 (4), 2014), 8 - 15. B

An adherence dominator on a topological space X is a function π from the collection of filterbases on X to the family of closed subsets of X satisfying A(Ω) ⊆ π(Ω) where A(Ω) is the adherence of Ω. The notations π(Ω) and A(Ω) are used for the values of the functions π and A and π ...


Totally Geodesic Surfaces In Arithmetic Hyperbolic 3-Manifolds, Benjamin Linowitz, Jeffrey S. Meyer 2017 Oberlin College

Totally Geodesic Surfaces In Arithmetic Hyperbolic 3-Manifolds, Benjamin Linowitz, Jeffrey S. Meyer

Summer Conference on Topology and Its Applications

In this talk we will discuss some recent work on the problem of determining the extent to which the geometry of an arithmetic hyperbolic 3-manifold M is determined by the geometric genus spectrum of M (i.e., the set of isometry classes of finite area, properly immersed, totally geodesic surfaces of M, considered up to free homotopy). In particular, we will give bounds on the totally geodesic 2-systole, construct infinitely many incommensurable manifolds with the same initial geometric genus spectrum and analyze the growth of the genera of minimal surfaces across commensurability classes. These results have applications to the study ...


Uncountably Many Quasi-Isometry Classes Of Groups Of Type Fp, Ignat Soroko, Robert Kropholler, Ian Leary 2017 University of Oklahoma

Uncountably Many Quasi-Isometry Classes Of Groups Of Type Fp, Ignat Soroko, Robert Kropholler, Ian Leary

Summer Conference on Topology and Its Applications

An interplay between algebra and topology goes in many ways. Given a space X, we can study its homology and homotopy groups. In the other direction, given a group G, we can form its Eilenberg-Maclane space K(G, 1). It is natural to wish that it is `small' in some sense. If K(G, 1) space has n-skeleton with finitely many cells, then G is said to have type Fn. Such groups act naturally on the cellular chain complex of the universal cover for K(G, 1), which has finitely generated free modules in all dimensions up to n ...


On The Tightness And Long Directed Limits Of Free Topological Algebras, Gábor Lukács, Rafael Dahmen 2017 Technische Universitat Darmstadt

On The Tightness And Long Directed Limits Of Free Topological Algebras, Gábor Lukács, Rafael Dahmen

Summer Conference on Topology and Its Applications

For a limit ordinal λ, let (Aα)α < λ be a system of topological algebras (e.g., groups or vector spaces) with bonding maps that are embeddings of topological algebras, and put A = ∪α < λ Aα. Let (A, T) and (A, A) denote the direct limit (colimit) of the system in the category of topological spaces and topological algebras, respectively. One always has TA, but the inclusion may be strict; however, if the tightness of A is smaller than the cofinality of λ, then A=T.

In 1988, Tkachenko proved that the free topological group F(X) is sequential ...


Classifying Matchbox Manifolds, Olga Lukina 2017 University of Illinois at Chicago

Classifying Matchbox Manifolds, Olga Lukina

Summer Conference on Topology and Its Applications

A matchbox manifold is a compact connected foliated space, locally homeomorphic to the product of a Euclidean disk and a Cantor set. Strange attractors in dynamical systems, and exceptional minimal sets of smooth foliations present examples of matchbox manifolds. Many actions of profinite groups on trees can be suspended to obtain matchbox manifolds, and similar examples arise in other contexts and in other parts of mathematics.

Thus there is a natural problem of classifying matchbox manifolds. The most tractable class of matchbox manifolds is the class of weak solenoids which are the inverse limits of finite-to-one coverings of closed manifolds ...


Digital Commons powered by bepress