A Comparison Of Cryptographic Methods,
2022
Liberty University
A Comparison Of Cryptographic Methods, Christopher Gilmore
Senior Honors Theses
While elliptic curve cryptography and quantum cryptography are significantly different branches of cryptography, they provide a suitable reference point for comparison of the value of developing methods used in the present and investing in methods to be used in the future. Elliptic curve cryptography is quite common today, as it is generally secure and efficient. However, as the field of cryptography advances, the value of quantum cryptography’s inherent security from its basic properties should be considered, as a fully realized quantum cryptosystem has the potential to be quite powerful. Ultimately, it is of critical importance to determine the value of …
Unomaha Problem Of The Week (2021-2022 Edition),
2022
University of Nebraska at Omaha
Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs
UNO Student Research and Creative Activity Fair
The University of Omaha math department's Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester's end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes.
Now there are three difficulty tiers to POW problems, roughly corresponding to …
Unknowable Truths: The Incompleteness Theorems And The Rise Of Modernism,
2022
Belmont University
Unknowable Truths: The Incompleteness Theorems And The Rise Of Modernism, Caroline Tvardy
Honors Scholars Collaborative Projects
This thesis evaluates the function of the current history of mathematics methodologies and explores ways in which historiographical methodologies could be successfully implemented in the field. Traditional approaches to the history of mathematics often lack either an accurate portrayal of the social and cultural influences of the time, or they lack an effective usage of mathematics discussed. This paper applies a holistic methodology in a case study of Kurt Gödel’s influential work in logic during the Interwar period and the parallel rise of intellectual modernism. In doing so, the proofs for Gödel’s Completeness and Incompleteness theorems will be discussed as …
Cryptography Through The Lens Of Group Theory,
2022
Georgia Southern University
Cryptography Through The Lens Of Group Theory, Dawson M. Shores
Electronic Theses and Dissertations
Cryptography has been around for many years, and mathematics has been around even longer. When the two subjects were combined, however, both the improvements and attacks on cryptography were prevalent. This paper introduces and performs a comparative analysis of two versions of the ElGamal cryptosystem, both of which use the specific field of mathematics known as group theory.
Introduction To Discrete Mathematics: An Oer For Ma-471,
2021
CUNY Queensborough Community College
Introduction To Discrete Mathematics: An Oer For Ma-471, Mathieu Sassolas
Open Educational Resources
The first objective of this book is to define and discuss the meaning of truth in mathematics. We explore logics, both propositional and first-order , and the construction of proofs, both formally and human-targeted. Using the proof tools, this book then explores some very fundamental definitions of mathematics through set theory. This theory is then put in practice in several applications. The particular (but quite widespread) case of equivalence and order relations is studied with detail. Then we introduces sequences and proofs by induction, followed by number theory. Finally, a small introduction to combinatorics is …
Algebraic Structures And Variations: From Latin Squares To Lie Quasigroups,
2021
Northern Michigan University
Algebraic Structures And Variations: From Latin Squares To Lie Quasigroups, Erik Flinn
All NMU Master's Theses
In this Master's Thesis we give an overview of the algebraic structure of sets with a single binary operation. Specifically, we are interested in quasigroups and loops and their historical connection with Latin squares; considering them in both finite and continuous variations. We also consider various mappings between such algebraic objects and utilize matrix representations to give a negative conclusion to a question concerning isotopies in the case of quasigroups.
Optimizing Networking Topologies With Shortest Path Algorithms,
2021
University of Nebraska at Omaha
Optimizing Networking Topologies With Shortest Path Algorithms, Jordan Sahs
UNO Student Research and Creative Activity Fair
Communication networks tend to contain redundant devices and mediums of transmission, thus the need to locate, document, and optimize networks is increasingly becoming necessary. However, many people do not know where to start the optimization progress. What is network topology? What is this “Shortest Path Problem”, and how can it be used to better my network? These questions are presented, taught, and answered within this paper. To supplement the reader’s understanding there are thirty-eight figures in the paper that are used to help convey and compartmentalize the learning process needed to grasp the materials presented in the ending sections.
In …
On Extensions And Restrictions Of Τ-Smooth And Τ-Maxitive Idempotent Measures,
2021
Institut of mathematical
On Extensions And Restrictions Of Τ-Smooth And Τ-Maxitive Idempotent Measures, Muzaffar M. Eshimbetov Mr
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
In the paper we investigate maps between idempotent measures spaces, τ-maxitive idempotent measures and their extensions and restrictions. For an idempotent measure we prove that its extension is τ-maxitive if and only if its restriction is τ-maxitive.
The Encyclopedia Of Neutrosophic Researchers - 4th Volume (2021),
2021
University of New Mexico
The Encyclopedia Of Neutrosophic Researchers - 4th Volume (2021), Florentin Smarandache, Maykel Leyva-Vazquez
Branch Mathematics and Statistics Faculty and Staff Publications
Este es el cuarto volumen de la Enciclopedia de Investigadores Neutróficos, editados a partir de materiales ofrecidos por los autores que respondieron a la invitación del editor. Los autores se enumeran alfabéticamente. La introducción contiene una breve historia de la neutrosófica, y en especial se su impacto en Latinoamérica junto con enlaces a los principales artículos y libros. Los conjuntos neutrosóficos, la lógica neutrosófica, la probabilidad neutrosófica, la estadística neutrosófica, el precálculo neutrosófico, el cálculo neutrosófico, la psicología neutrosófica, la sociología neutrosófica etc., están ganando una atención significativa en resolver muchos problemas de la vida real que implican incertidumbre, imprecisión, …
Theory And Application Of Hypersoft Set,
2021
University of New Mexico
Theory And Application Of Hypersoft Set, Florentin Smarandache, Muhammad Saeed, Muhammad Saqlain, Mohamed Abdel-Baset
Branch Mathematics and Statistics Faculty and Staff Publications
Aims and Scope Florentin Smarandache generalize the soft set to the hypersoft set by transforming the function �� into a multi-argument function. This extension reveals that the hypersoft set with neutrosophic, intuitionistic, and fuzzy set theory will be very helpful to construct a connection between alternatives and attributes. Also, the hypersoft set will reduce the complexity of the case study. The Book “Theory and Application of Hypersoft Set” focuses on theories, methods, algorithms for decision making and also applications involving neutrosophic, intuitionistic, and fuzzy information. Our goal is to develop a strong relationship with the MCDM solving techniques and to …
Solving Neutrosophic Linear Equations Systems Using Symbolic Computation (Resolucion De Sistemas De Ecuaciones Lineales Neutrosóficas Mediante Computación Simbólica),
2021
University of New Mexico
Solving Neutrosophic Linear Equations Systems Using Symbolic Computation (Resolucion De Sistemas De Ecuaciones Lineales Neutrosóficas Mediante Computación Simbólica), Maykel Leyva-Vazquez, Florentin Smarandache
Branch Mathematics and Statistics Faculty and Staff Publications
In this paper, we apply the concept of neutrosophic numbers to solve a systems of neutrophic linear equations using symbolic computation. Also, we utilize Jupyter, which is supported in Google Colaboratory for performing symbolic computation. The sympy library of Python is used to perform the process of neutrosophic computation. Systems of neutrosophic linear equations are solved through symbolic computation in Python. A case study was developed for the determination of vehicular traffic with indeterminacy. This king of computation opens new ways to deal with indeterminacy in real-world problems.
Structure, Neutrostructure, And Antistructure In Science,
2020
University of New Mexico
Structure, Neutrostructure, And Antistructure In Science, Florentin Smarandache
Branch Mathematics and Statistics Faculty and Staff Publications
In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for all elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-example where the statement is false. Therefore, the classical sciences do not leave room for partial truth of a theorem (or a statement). But, in our world and in our everyday life, we have many more examples of statements that are only partially true, than statements that are totally true. The NeutroTheorem and AntiTheorem are generalizations and alternatives of …
Introduction To Neutrosophic Genetics,
2020
University of New Mexico
Introduction To Neutrosophic Genetics, Florentin Smarandache
Branch Mathematics and Statistics Faculty and Staff Publications
Neutrosophic Genetics is the study of genetics using neutrosophic logic, set, probability, statistics, measure and other neutrosophic tools and procedures. In this paper, based on the Neutrosophic Theory of Evolution (that includes degrees of Evolution, Neutrality (or Indeterminacy), and Involution) – as extension of Darwin’s Theory of Evolution, we show the applicability of neutrosophy in genetics, and we present within the frame of neutrosophic genetics the following concepts: neutrosophic mutation, neutrosophic speciation, and neutrosophic coevolution.
True-False Set Is A Particular Case Of The Refined Neutrosophic Set,
2020
University of New Mexico
True-False Set Is A Particular Case Of The Refined Neutrosophic Set, Florentin Smarandache, Said Broumi
Branch Mathematics and Statistics Faculty and Staff Publications
Borzooei, Mohseni Takallo, and Jun recently proposed a new type of set, called True-False Set [1], and they claimed it is a generalization of Neutrosophic Set [2]. We prove that this assertion is untrue. Actually it’s the opposite, the True-False Set is a particular case of the Refined Neutrosophic Set.
A Novel Framework Using Neutrosophy For Integrated Speech And Text Sentiment Analysis,
2020
University of New Mexico
A Novel Framework Using Neutrosophy For Integrated Speech And Text Sentiment Analysis, Florentin Smarandache, Kritika Mishra, Ilanthenral Kandasamy, Vasantha Kandasamy W.B.
Branch Mathematics and Statistics Faculty and Staff Publications
With increasing data on the Internet, it is becoming difficult to analyze every bit and make sure it can be used efficiently for all the businesses. One useful technique using Natural Language Processing (NLP) is sentiment analysis. Various algorithms can be used to classify textual data based on various scales ranging from just positive-negative, positive-neutral-negative to a wide spectrum of emotions. While a lot of work has been done on text, only a lesser amount of research has been done on audio datasets. An audio file contains more features that can be extracted from its amplitude and frequency than a …
Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder,
2020
University of Pittsburgh
Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder, Matthew Karlson, Bogdan Nita, Ashwin Vaidya
Department of Mathematics Facuty Scholarship and Creative Works
We examine two dimensional properties of vortex shedding past elliptical cylinders through numerical simulations. Specifically, we investigate the vortex formation length in the Reynolds number regime 10 to 100 for elliptical bodies of aspect ratio in the range 0.4 to 1.4. Our computations reveal that in the steady flow regime, the change in the vortex length follows a linear profile with respect to the Reynolds number, while in the unsteady regime, the time averaged vortex length decreases in an exponential manner with increasing Reynolds number. The transition in profile is used to identify the critical Reynolds number which marks the …
Length Neutrosophic Subalgebras Of Bck/Bci-Algebras,
2020
University of New Mexico
Length Neutrosophic Subalgebras Of Bck/Bci-Algebras, Florentin Smarandache, Young Bae Jun, Madad Khan, Seok-Zun Song
Branch Mathematics and Statistics Faculty and Staff Publications
the notion of (i, j, k)-length neutrosophic subalgebras in BCK/BCI-algebras is introduced, and their properties are investigated. Characterizations of length neutrosophic subalgebras are discussed by using level sets of interval neutrosophic sets. Conditions for level sets of interval neutrosophic sets to be subalgebras are provided.
On Product Of Smooth Neutrosophic Topological Spaces,
2020
University of New Mexico
On Product Of Smooth Neutrosophic Topological Spaces, Florentin Smarandache, Kalaivani Chandran, Swathi Sundari Sundaramoorthy, Saeid Jafari
Branch Mathematics and Statistics Faculty and Staff Publications
In this paper, we develop the notion of the basis for a smooth neutrosophic topology in a more natural way. As a sequel, we define the notion of symmetric neutrosophic quasi-coincident neighborhood systems and prove some interesting results that fit with the classical ones, to establish the consistency of theory developed. Finally, we define and discuss the concept of product topology, in this context, using the definition of basis.
Plithogenic Cubic Sets,
2020
University of New Mexico
Plithogenic Cubic Sets, Florentin Smarandache, S.P. Priyadharshini, F. Nirmala Irudayam
Branch Mathematics and Statistics Faculty and Staff Publications
In this article, using the concepts of cubic set and plithogenic set, the ideas of plithogenic fuzzy cubic set, plithogenic intuitionistic fuzzy cubic set, plithogenic neutrosophic cubic set are introduced and its corresponding internal and external cubic sets are discussed with examples.
A Novel Approach For Assessing The Reliability Of Data Contained In A Single Valued Neutrosophic Number And Its Application In Multiple Criteria Decision Making,
2020
University of New Mexico
A Novel Approach For Assessing The Reliability Of Data Contained In A Single Valued Neutrosophic Number And Its Application In Multiple Criteria Decision Making, Florentin Smarandache, Dragisa Stanujkic, Darjan Karabasevic, Gabrijela Popovic
Branch Mathematics and Statistics Faculty and Staff Publications
Multiple criteria decision making is one of the many areas where neutrosophic sets have been applied to solve various problems so far.