Open Access. Powered by Scholars. Published by Universities.®

Databases and Information Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

5,908 Full-Text Articles 7,700 Authors 2,672,546 Downloads 196 Institutions

All Articles in Databases and Information Systems

Faceted Search

5,908 full-text articles. Page 2 of 219.

Muse: A Genetic Algorithm For Musical Chord Progression Generation, Griffin Going 2022 Grand Valley State University

Muse: A Genetic Algorithm For Musical Chord Progression Generation, Griffin Going

Culminating Experience Projects

Foundational to our understanding and enjoyment of music is the intersection of harmony and movement. This intersection manifests as chord progressions which themselves underscore the rhythm and melody of a piece. In musical compositions, these progressions often follow a set of rules and patterns which are themselves frequently broken for the sake of novelty. In this work, we developed a genetic algorithm which learns these rules and patterns (and how to break them) from a dataset of 890 songs from various periods of the Billboard Top 100 rankings. The algorithm learned to generate increasingly valid, yet interesting chord progressions via …


A Maturity Model Of Data Modeling In Self-Service Business Intelligence Software, Anna Kurenkov 2022 Kennesaw State University

A Maturity Model Of Data Modeling In Self-Service Business Intelligence Software, Anna Kurenkov

Master of Science in Information Technology Theses

Although Self-Service Business Intelligence (SSBI) is continually being adopted in various industries, there is a lack of research focused on data modeling in SSBI. This research aims to fill that research gap and propose a maturity model for SSBI data modeling which is generalizeable between different software and applicable for users of all technical backgrounds. Through extensive literature review, a five-tier maturity model was proposed, explained, and instantiated in PowerBI and Tableau. The testing of the model was found to be simple and intuitive, and the research concludes that the model is applicable to enterprise SSBI environments. This research is …


Payload-Byte: A Tool For Extracting And Labeling Packet Capture Files Of Modern Network Intrusion Detection Datasets, Yasir Farrukh, Irfan Khan, Syed Wali, David A. Bierbrauer, John Pavlik, Nathaniel D. Bastian 2022 Army Cyber Institute, United States Military Academy

Payload-Byte: A Tool For Extracting And Labeling Packet Capture Files Of Modern Network Intrusion Detection Datasets, Yasir Farrukh, Irfan Khan, Syed Wali, David A. Bierbrauer, John Pavlik, Nathaniel D. Bastian

ACI Journal Articles

Adapting modern approaches for network intrusion detection is becoming critical, given the rapid technological advancement and adversarial attack rates. Therefore, packet-based methods utilizing payload data are gaining much popularity due to their effectiveness in detecting certain attacks. However, packet-based approaches suffer from a lack of standardization, resulting in incomparability and reproducibility issues. Unlike flow-based datasets, no standard labeled dataset exists, forcing researchers to follow bespoke labeling pipelines for individual approaches. Without a standardized baseline, proposed approaches cannot be compared and evaluated with each other. One cannot gauge whether the proposed approach is a methodological advancement or is just being benefited …


Software Supply Chain Security Attacks And Analysis Of Defense, Juanjose Rodriguez-Cardenas, Jobair Hossain Faruk, Masura Tansim, Asia Shavers, Corey Brookins, Shamar Lake, Ava Norouzi, Marie Nassif, Kenneth Burke, Miranda Dominguez 2022 Kennesaw State University

Software Supply Chain Security Attacks And Analysis Of Defense, Juanjose Rodriguez-Cardenas, Jobair Hossain Faruk, Masura Tansim, Asia Shavers, Corey Brookins, Shamar Lake, Ava Norouzi, Marie Nassif, Kenneth Burke, Miranda Dominguez

Symposium of Student Scholars

The Software Supply chain or SSC is the backbone of the logistics industry and is crucial to a business's success and operation. The surge of attacks and risks for the SSC has grown in coming years with each attack's impact becoming more significant. These attacks have led to the leaking of both client and company sensitive information, corruption of the data, and having it subject to malware and ransomware installation, despite new practices implemented and investments into SSC security and its branches that have not stopped attackers from developing new vulnerabilities and exploits. In our research, we have investigated Software …


Secure Cloud-Based Iot Water Quality Gathering For Analysis And Visualization, Soin Abdoul Kassif Baba M Traore 2022 Kennesaw State University

Secure Cloud-Based Iot Water Quality Gathering For Analysis And Visualization, Soin Abdoul Kassif Baba M Traore

Symposium of Student Scholars

Water quality refers to measurable water characteristics, including chemical, biological, physical, and radiological characteristics usually relative to human needs. Dumping waste and untreated sewage are the reasons for water pollution and several diseases to the living hood. The quality of water can also have a significant impact on animals and plant ecosystems. Therefore, keeping track of water quality is a substantial national interest. Much research has been done for measuring water quality using sensors to prevent water pollution. In summary, those systems are built based on online and reagent-free water monitoring SCADA systems in wired networks. However, centralized servers, transmission …


Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng LAU, Rafael Jose BARROS BARRIOS, GOTTIPATI Swapna, Kyong Jin SHIM 2022 Singapore Management University

Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng Lau, Rafael Jose Barros Barrios, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Online industry learning platforms are widely used by organizations for employee training and upskilling. Courses or lessons offered by these platforms can be generic or specific to an enterprise application. The increased demand of new hires to learn these platforms or who are already certified in some of these courses has led universities to look at the opportunities for integrating online industry learning platforms into their curricula. Universities hope to use these platforms to aid students in their learning of concepts and theories. At the same time, these platforms can equip students with industryrecognized certifications or digital badges. This paper …


R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao WANG, Yixin CAO, Yangguang LI, Zhen HUANG, Kun WANG, Jing SHAO 2022 Singapore Management University

R2f: A General Retrieval, Reading And Fusion Framework For Document-Level Natural Language Inference, Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao

Research Collection School Of Computing and Information Systems

Document-level natural language inference (DocNLI) is a new challenging task in natural language processing, aiming at judging the entailment relationship between a pair of hypothesis and premise documents. Current datasets and baselines largely follow sentence-level settings, but fail to address the issues raised by longer documents. In this paper, we establish a general solution, named Retrieval, Reading and Fusion (R2F) framework, and a new setting, by analyzing the main challenges of DocNLI: interpretability, long-range dependency, and cross-sentence inference. The basic idea of the framework is to simplify document-level task into a set of sentence-level tasks, and improve both performance and …


Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying REN, Lei WANG, Kunpeng LIU, Ruocheng GUO, Ee-peng LIM, Yanjie FU 2022 Singapore Management University

Mitigating Popularity Bias In Recommendation With Unbalanced Interactions: A Gradient Perspective, Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Ee-Peng Lim, Yanjie Fu

Research Collection School Of Computing and Information Systems

Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient …


Cold Calls To Enhance Class Participation And Student Engagement, M. THULASIDAS, Aldy GUNAWAN 2022 Singapore Management University

Cold Calls To Enhance Class Participation And Student Engagement, M. Thulasidas, Aldy Gunawan

Research Collection School Of Computing and Information Systems

The question whether cold calls increase student engagement in the classroom has not been conclusively answered in the literature. This study describes the automated system to implement unbiased, randomized cold calling by posing a question, allowing all students to think first and then calling on a particular student to respond. Since we already have a measure of the level of student engagement as the self-reported classparticipation entries from the students, its correlation to cold calling is also further studied. The results show that there is a statistically significant increase in the class participation reported, and therefore in student engagement, in …


Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan KE, Ka Chung Boris NG 2022 Singapore Management University

Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan Ke, Ka Chung Boris Ng

Research Collection School Of Computing and Information Systems

Decentralized Finance (DeFi) emerged rapidly in recent years and provided open and transparent financial services to the public. Due to its popularity, it is not uncommon to see cybersecurity incidents in the DeFi landscape, yet the impact of such incidents is under-studied. In this paper, we examine two incidents in DeFi protocol that are mainly caused by misgovernance and mistake in the smart contract. By using the synthetic control method, we found that the incident in Alchemix did not have a significant effect on the total value locked (TVL) in the protocol, whereas the incident in Compound caused a 6.13% …


Deep Just-In-Time Defect Localization, Fangcheng QIU, Zhipeng GAO, Xin XIA, David LO, John GRUNDY, Xinyu WANG 2022 Singapore Management University

Deep Just-In-Time Defect Localization, Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xinyu Wang

Research Collection School Of Computing and Information Systems

During software development and maintenance, defect localization is an essential part of software quality assurance. Even though different techniques have been proposed for defect localization, i.e., information retrieval (IR)-based techniques and spectrum-based techniques, they can only work after the defect has been exposed, which can be too late and costly to adapt to the newly introduced bugs in the daily development. There are also many JIT defect prediction tools that have been proposed to predict the buggy commit. But these tools do not locate the suspicious buggy positions in the buggy commit. To assist developers to detect bugs in time …


Curiosity-Driven And Victim-Aware Adversarial Policies, Chen GONG, Zhou YANG, Yunpeng BAI, Jieke SHI, Arunesh SINHA, Bowen XU, David LO, Xinwen HOU, Guoliang FAN 2022 Singapore Management University

Curiosity-Driven And Victim-Aware Adversarial Policies, Chen Gong, Zhou Yang, Yunpeng Bai, Jieke Shi, Arunesh Sinha, Bowen Xu, David Lo, Xinwen Hou, Guoliang Fan

Research Collection School Of Computing and Information Systems

Recent years have witnessed great potential in applying Deep Reinforcement Learning (DRL) in various challenging applications, such as autonomous driving, nuclear fusion control, complex game playing, etc. However, recently researchers have revealed that deep reinforcement learning models are vulnerable to adversarial attacks: malicious attackers can train adversarial policies to tamper with the observations of a well-trained victim agent, the latter of which fails dramatically when faced with such an attack. Understanding and improving the adversarial robustness of deep reinforcement learning is of great importance in enhancing the quality and reliability of a wide range of DRL-enabled systems. In this paper, …


A Recommendation On How To Teach K-Means In Introductory Analytics Courses, M. THULASIDAS 2022 Singapore Management University

A Recommendation On How To Teach K-Means In Introductory Analytics Courses, M. Thulasidas

Research Collection School Of Computing and Information Systems

We teach K-Means clustering in introductory data analytics courses because it is one of the simplest and most widely used unsupervised machine learning algorithms. However, one drawback of this algorithm is that it does not offer a clear method to determine the appropriate number of clusters; it does not have a built-in mechanism for K selection. What is usually taught as the solution for the K Selection problem is the so-called elbow method, where we look at the incremental changes in some quality metric (usually, the sum of squared errors, SSE), trying to find a sudden change. In addition to …


Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes 2022 Department of Primary Industries and Regional Development, Western Australia

Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes

Resource management technical reports

Maintaining vegetative groundcover is an important component of sustainable agricultural systems and plays a critical function for soil and land conservation in Western Australia’s (WA) grainbelt (the south-west cropping region). This report describes how satellite imagery can be used to quantitatively and objectively estimate total vegetative groundcover, both in near real time and historically across large areas. We used the Landsat seasonal fractional groundcover products developed by the Joint Remote Sensing Research Program from the extensive archive of Landsat imagery. These products provide an estimate of the percentage of green vegetation, non-green vegetation and bare soil for each 30 m …


Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing YANG, Chen ZHANG, Baihua ZHENG 2022 Singapore Management University

Segment-Wise Time-Varying Dynamic Bayesian Network With Graph Regularization, Xing Yang, Chen Zhang, Baihua Zheng

Research Collection School Of Computing and Information Systems

Time-varying dynamic Bayesian network (TVDBN) is essential for describing time-evolving directed conditional dependence structures in complex multivariate systems. In this article, we construct a TVDBN model, together with a score-based method for its structure learning. The model adopts a vector autoregressive (VAR) model to describe inter-slice and intra-slice relations between variables. By allowing VAR parameters to change segment-wisely over time, the time-varying dynamics of the network structure can be described. Furthermore, considering some external information can provide additional similarity information of variables. Graph Laplacian is further imposed to regularize similar nodes to have similar network structures. The regularized maximum a …


A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen WAN, Zheng ZHANG, Qi ZHU, Lizi LIAO, Minlie HUANG 2022 Singapore Management University

A Unified Dialogue User Simulator For Few-Shot Data Augmentation, Dazhen Wan, Zheng Zhang, Qi Zhu, Lizi Liao, Minlie Huang

Research Collection School Of Computing and Information Systems

Pre-trained language models have shown superior performance in task-oriented dialogues. However, existing datasets are on limited scales, which cannot support large-scale pre-training. Fortunately, various data augmentation methods have been developed to augment largescale task-oriented dialogue corpora. However, they heavily rely on annotated data in the target domain, which require a tremendous amount of data collection and human labeling work. In this paper, we build a unified dialogue user simulation model by pre-training on several publicly available datasets. The model can then be tuned on a target domain with fewshot data. The experiments on a target dataset across multiple domains show …


S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin WANG, Zhiwu HUANG, Xiaopeng. HONG 2022 Singapore Management University

S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin Wang, Zhiwu Huang, Xiaopeng. Hong

Research Collection School Of Computing and Information Systems

State-of-the-art deep neural networks are still struggling to address the catastrophic forgetting problem in continual learning. In this paper, we propose one simple paradigm (named as S-Prompting) and two concrete approaches to highly reduce the forgetting degree in one of the most typical continual learning scenarios, i.e., domain increment learning (DIL). The key idea of the paradigm is to learn prompts independently across domains with pre-trained transformers, avoiding the use of exemplars that commonly appear in conventional methods. This results in a win-win game where the prompting can achieve the best for each domain. The independent prompting across domains only …


What Should Streamers Communicate In Livestream E-Commerce? The Effects Of Social Interactions On Live Streaming Performance, Danyang SONG, Xi CHEN, Zhiling GUO, Xiao Liu LIU, Ruijin. JIN 2022 Singapore Management University

What Should Streamers Communicate In Livestream E-Commerce? The Effects Of Social Interactions On Live Streaming Performance, Danyang Song, Xi Chen, Zhiling Guo, Xiao Liu Liu, Ruijin. Jin

Research Collection School Of Computing and Information Systems

Compared with traditional e-commerce, livestreaming e-commerce is characterized by direct and intimate communication between streamers and consumers that stimulates instant social interactions. This study focuses on streamers’ three types of information exchange (i.e., product information, social conversation, and social solicitation) and examines their roles in driving both short-term and long-term livestreaming performance (i.e., sales and customer base growth). We find that the informational role of product information (nonpromotional and promotional) is beneficial not only to sales performance, but also to the growth of the customer base. We also find that social conversation has a relationship-building effect that positively impacts both …


Prompting For Multimodal Hateful Meme Classification, Rui CAO, Roy Ka-Wei LEE, Wen-Haw CHONG, Jing JIANG 2022 Singapore Management University

Prompting For Multimodal Hateful Meme Classification, Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, Jing Jiang

Research Collection School Of Computing and Information Systems

Hateful meme classification is a challenging multimodal task that requires complex reasoning and contextual background knowledge. Ideally, we could leverage an explicit external knowledge base to supplement contextual and cultural information in hateful memes. However, there is no known explicit external knowledge base that could provide such hate speech contextual information. To address this gap, we propose PromptHate, a simple yet effective prompt-based model that prompts pre-trained language models (PLMs) for hateful meme classification. Specifically, we construct simple prompts and provide a few in-context examples to exploit the implicit knowledge in the pretrained RoBERTa language model for hateful meme classification. …


Dialogconv: A Lightweight Fully Convolutional Network For Multi-View Response Selection, Yongkang LIU, Shi FENG, Wei GAO, Daling WANG, Yifei ZHANG 2022 Singapore Management University

Dialogconv: A Lightweight Fully Convolutional Network For Multi-View Response Selection, Yongkang Liu, Shi Feng, Wei Gao, Daling Wang, Yifei Zhang

Research Collection School Of Computing and Information Systems

Current end-to-end retrieval-based dialogue systems are mainly based on Recurrent Neural Networks or Transformers with attention mechanisms. Although promising results have been achieved, these models often suffer from slow inference or huge number of parameters. In this paper, we propose a novel lightweight fully convolutional architecture, called DialogConv, for response selection. DialogConv is exclusively built on top of convolution to extract matching features of context and response. Dialogues are modeled in 3D views, where DialogConv performs convolution operations on embedding view, word view and utterance view to capture richer semantic information from multiple contextual views. On the four benchmark datasets, …


Digital Commons powered by bepress