Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

3,550 Full-Text Articles 8,665 Authors 691,761 Downloads 129 Institutions

All Articles in Materials Chemistry

Faceted Search

3,550 full-text articles. Page 47 of 117.

Electrochemical Preparation And Photo-Electro Catalytic Properties Of Flexible Znni/Al-Ldhs/Carbon Fibers Composite, Jing-jing TIAN, Tao CHEN, Xing-chen BAO, Meng-xu GAO, Ye-xiao YU, Si-yao PENG, Guan-ping JIN 2018 Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China;

Electrochemical Preparation And Photo-Electro Catalytic Properties Of Flexible Znni/Al-Ldhs/Carbon Fibers Composite, Jing-Jing Tian, Tao Chen, Xing-Chen Bao, Meng-Xu Gao, Ye-Xiao Yu, Si-Yao Peng, Guan-Ping Jin

Journal of Electrochemistry

In this work, a promising flexible composite consisting of zinc (Zn), nickel (Ni) and aluminum (Al) layered double hydroxide coated carbon fibers (ZnNi/Al-LDHs/CFs) was prepared by electrochemical method with convenient recovery and separation. The structures, morphologies, and photo-electro catalytic properties of ZnNi/Al-LDHs/CFs were characterized by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy, inductively coupled plasma atomic emission spectrometry and electrochemical impedance spectroscopy techniques. The excellent photo-electro bifunctional catalytic properties were obtained with the ZnNi/Al-LDHs/CFs composite as compared to that of Zn/Al-LDHs/CFs (photo catalyst) or Ni/Al-LDHs/CFs (electrocatalyst) alone, which could be used in the electro-catalytic oxidations of methanol and …


Preparation And Characterization Of Self-Supporting Flexible Nitrogen-Doped Carbon Fabric Electrodes, Bo YANG, Zhi-hang JIN, Ya-ping ZHAO, Zai-sheng CAI 2018 Fundamental Experimental Chemistry Center, Donghua University, Shanghai 201620, China;

Preparation And Characterization Of Self-Supporting Flexible Nitrogen-Doped Carbon Fabric Electrodes, Bo Yang, Zhi-Hang Jin, Ya-Ping Zhao, Zai-Sheng Cai

Journal of Electrochemistry

With the wide applications of intelligent wearable devices in various fields, developing a new generation of flexible energy storage devices has become a major challenge for the current technology. As a wide application of wearable flexible substrate, cotton fabric has the advantages over low price, non-toxic and environmental friendly, but the poor conductivity becomes a major problem limiting its development. As a nitrogen-containing conducting polymer, polypyrrole is traditionally used as electrode materials, but poor mechanical performance and cycle stability severely limit its application in electrode materials. In this article, a self-supporting flexible nitrogen-doped carbon fabric electrode was prepared by in …


Acetylcholinesterase Biosensor Platform Based On Bp2000 For The Detection Of Carbaryl, Ming-han ZHANG, Jun-qiao JIANG, Jun-jie Ge, Wei XING 2018 College of Chemistry and Material Science, Jinan University, Guangzhou 511400, China;Jilin Laboratory of Advanced Power, Changchun Institute of Applied Chemistry,Changchun 130022, China;

Acetylcholinesterase Biosensor Platform Based On Bp2000 For The Detection Of Carbaryl, Ming-Han Zhang, Jun-Qiao Jiang, Jun-Jie Ge, Wei Xing

Journal of Electrochemistry

With the purpose of providing a new method for carbaryl (a pesticide) detection, on the basis of the principle that acetylcholinesterase (AChE) activity can be restrained by carbaryl, an AChE biosensor platform based on BP2000 (as a fixation) was constructed by dropping method. As a result, it revealed that AChE immobilized on BP2000 maintained its catalytic activity for acetylcholine (ATCl), and due to the introduction of the BP2000 material, the effective electrochemical surface area of the modified electrode was enlarged. In addition, the electrochemical oxidation at the modified electrode occurred at low potential (0.630 V) accompanied by proton transmission. The …


Complex Coordination Silver Electrocrystallization Mechanism On Glassy Carbon Electrode Surface, Shuai-shuai HUANG, Cheng LIU, Lei JIN, Fang-zu YANG, Zhong-qun TIAN, Shao-min. ZHOU 2018 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China;

Complex Coordination Silver Electrocrystallization Mechanism On Glassy Carbon Electrode Surface, Shuai-Shuai Huang, Cheng Liu, Lei Jin, Fang-Zu Yang, Zhong-Qun Tian, Shao-Min. Zhou

Journal of Electrochemistry

Cyclic voltammetry and potential step methods were successfully used to study the electrochemical crystallization mechanism of silver deposition on glassy carbon electrode (GCE) in the practical cyanide-free silver plating electrolyte containing composite complexing agents. Scharifker-Hill (SH) theory was used to fitting the experimental data. The results showed that the electrodeposition of silver is a diffusion controlled irreversible electrode process according to three-dimensional instantaneous nucleation mechanism. When the step potential shifted from -750 mV to -825 mV, the peak deposition current Im was increased, while the induced nucleation time tm shortened. The calculated kinetic parameters showed that the diffusion coefficient (D) …


Preparations Of Nano-Manganite Loaded Titanium Electocatalytic Membrane Electrode For Phenolic Wastewater Treatment, Le LI, Hong WANG, Rong-hua MA, Hong-sen HUI, Xiao-ping LIANG, Jian-xin LI 2018 State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;

Preparations Of Nano-Manganite Loaded Titanium Electocatalytic Membrane Electrode For Phenolic Wastewater Treatment, Le Li, Hong Wang, Rong-Hua Ma, Hong-Sen Hui, Xiao-Ping Liang, Jian-Xin Li

Journal of Electrochemistry

Nano-manganese oxide loaded on titanium electrocatalytic membrane electrodes (nano-MnOx/Ti) were synthesized bysol-gel method using porous Ti membrane as a substrate and the manganese acetate as a raw material without releasing NOx. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Field-emission scanning electron microscopy (FESEM) were employed to characterize crystal form, valence state and surface morphology of nano-MnOx, respectively. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to investigate the electrochemical properties of nano-MnOx electrode. The results indicated that the MnOx catalysts consisted of γ-MnO2 and Mn2 …


An Aqueous All-Metal Oxide Asymmetric Supercapacitor With High Gravimetric And Volumetric Energy Densities, JING Xin, Xu ZHANG, WANG Wei, LANG Jun-wei 2018 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, P. R. China;Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, P.R. China;

An Aqueous All-Metal Oxide Asymmetric Supercapacitor With High Gravimetric And Volumetric Energy Densities, Jing Xin, Xu Zhang, Wang Wei, Lang Jun-Wei

Journal of Electrochemistry

Only with both high gravimetric and high volumetric energy densities, can supercapacitors find more extensive applications.In this paper, by making good use of the interesting nanostructures and the high packing densities of RuO2 (nanoshpheres,1.69 g·cm-3) and Co-Ni oxide (nanoflakes, 2.14 g·cm-3), the RuO2//KOH//Co-Ni oxide all-metal oxide asymmetric supercapacitors with high performance were successfully fabricated, which led to the maximum specific capacitance of 217.5 F·g-1 (412.3 F·cm-3) and specific energy density of 61.8 Wh·kg-1 (121 Wh·L-1) in a cell voltage between 0 and 1.5 V in KOH electrolyte. …


Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi XU, Juan LIU, Hua-zong WU, Wen-jie Jiang 2018 State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, Jiangxi, China;

Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang

Journal of Electrochemistry

Hydrogen energy, a kind of clean and renewable energy, is considered to be the solution to the problems of energy crisis and environmental deterioration. Electrochemical water splitting is an efficient and promising technology for the production of high-purity hydrogen. However, oxygen evolution reaction (OER) at the anode of water electrolyzer limits the efficiency of water splitting due to the high overpotential. Therefore, the challenges still remain for the exploration of highly active, stable and low-cost catalysts with superior activity for OER. Herein, nickel borate nanorods with high crystallinity were prepared via high-temperature calcination. The as-obtained nickel borate nanorods with 2 …


Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib 2018 University of Maine

Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib

Electronic Theses and Dissertations

Hydrodeoxygenation of phenol to benzene using ruthenium supported titania catalysts strongly varies depending on the support crystal structure and preparation conditions. Here, we performed spectroscopic characterization of titania supports to identify the surface impurities common to commercial and synthesized titania samples using a variety of spectroscopic methods. Sulfate impurities were detected for the commercial anatase samples and a procedure for their elimination was proposed so that inactive catalysts gained reactivity. Surface hydroxyls of different TiO2 samples (anatase, rutile, and pyrogenic) were identified using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments performed on vigorously cleaned surfaces and a facet-specific assignment …


Chemically Cross-Linked Polysaccharide-Based Hydrogels Via Thiol-Norbornene Reaction As Sustainable Biomaterials, Nayereh Dadoo 2018 University of Maine

Chemically Cross-Linked Polysaccharide-Based Hydrogels Via Thiol-Norbornene Reaction As Sustainable Biomaterials, Nayereh Dadoo

Electronic Theses and Dissertations

Hydrogels are 3D polymeric networks with high water content and are widely being investigated for biomedical applications such as tissue engineering. Polysaccharides have been used to fabricate hydrogels due to their natural abundance, biocompatibility, and immunogeniety. Additionally, polysaccharide-based hydrogels can provide mechanical and biological cues similar to those of the natural environments. In this work, thiol-norbornene chemistry was used to fabricate polysaccharide-based hydrogels including hyaluronic acid (HA), carboxymethyl cellulose (CMC), and cellulose nanofibrils (CNFs). Hydrogels with tunable physical and mechanical properties were achieved. The properties of these hydrogels were spatiotemporally modified by photopatterning. Also, high stem cell viability was achieved …


Platinum@Hexaniobate Nanopeapods: Sensitized Composite Architectures For Photocatalytic Hydrogen Evolution Under Visible Light Irradiation, Clare Davis-Wheeler Chin 2018 University of New Orleans

Platinum@Hexaniobate Nanopeapods: Sensitized Composite Architectures For Photocatalytic Hydrogen Evolution Under Visible Light Irradiation, Clare Davis-Wheeler Chin

University of New Orleans Theses and Dissertations

Hydrogen fuel is one of the most important areas of research in the field of renewable energy development and production. Hydrogen gas can be generated by fuel cells, water electrolyzers, and heterogeneous nanoscale catalysts. It can be burned to directly release chemical energy or condensed for storage and transport, providing fuel for combustion devices or storing excess energy generated by renewable sources such as wind turbines and concentrated solar power assemblies. While platinum is the most active catalyst for hydrogen reduction, its high cost significantly deters its utilization in advanced photocatalytic materials. One approach to mitigating this expense is optimizing …


Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng. 2018 The British University in Egypt

Fabrication Of Mnox/Mwcnts-Gc Nanocatalyst For Oxygen Evolution Reaction, Yaser M. Asal Mr, Islam M. Al-Akraa Dr, Amr M. Arafa Eng.

Chemical Engineering

Manganese oxide (MnOx) and multiwalled carbon nanotubes (MWCNTs) are intended to modify the GC electrode for oxygen evolution reaction (OER). Optimization of MnOx loading is carried out and the deposition of 55 cycles was sufficient to obtain the highest activity toward OER. The stability of the catalyst is enhanced by the addition of MWCNTs. As a result, an amount of 22 kWh/Kg of O2 of energy is saved. Several techniques including cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy will be combined to track the catalyst activity and to determine its …


Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li 2018 Purdue University

Examining The Effects Of Amino And Thiolate Ligands On The Reactivity And Selectivity Of Palladium On Carbon In Hydrogenation Reactions, Eric Liu, Christina Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous catalysts are used widely by chemical and energy industries because they show high reactivity but often suffer from lack of selectivity. On the other hand, ligands are commonly used in homogeneous catalysts to control the reactivity and selectivity; however, the effects of the ligands on the steric and electronic properties of heterogeneous catalysts are less understood. We examine the effects of four different ligands: 1-adamantanethiol, 1-adamantylamine, 1-dodecanethiol, and 1-dodecylamine, for the commercial hydrogenation catalyst palladium on carbon. Hydrogenation reactions are used as a screening tool to see the behavior that the different catalysts exhibit in the presence of unsaturated …


Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph V. Lewis 2018 Utah State University

Piezoresponse, Mechanical, And Electrical Characteristics Of Synthetic Spider Silk Nanofibers, Nader Shehata, Ishac Kandas, Ibrahim Hassounah, Patrik Sobolčiak, Igor Krupa, Miroslav Mrlik, Anton Popelka, Jesse Steadman, Randolph V. Lewis

Biology Faculty Publications

This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level …


Synthesis And Characterization Of Block Copolymers For Shear Force Responsive Materials And Sugar Conjugated Fluorescent Probes, Jacob Ryan Blankenship 2018 Missouri State University

Synthesis And Characterization Of Block Copolymers For Shear Force Responsive Materials And Sugar Conjugated Fluorescent Probes, Jacob Ryan Blankenship

MSU Graduate Theses

Herein, I present my work towards two goals: shear force-responsive materials and sugarconjugated fluorescent probes for bacterial identification applications. The first work is on the development of stimuli-responsive polymers that allow for precise control over the release of encapsulated material. Stimuli-responsive polymers are becoming increasingly important in drug delivery and other applications. However there have been few reports on shear force-responsive micellar systems. I show the synthesis, and characterization by 1H and 13C NMR of four macro-chain transfer agents (macro-CTAs), one of which has not been previously reported. The resulting macro-CTAs were used in polymerization of vinyl acetate …


Effects Of High Pressure On Photochemical Reactivity Of Organic Molecular Materials Probed By Vibrational Spectroscopy, Jiwen Guan 2018 The University of Western Ontario

Effects Of High Pressure On Photochemical Reactivity Of Organic Molecular Materials Probed By Vibrational Spectroscopy, Jiwen Guan

Electronic Thesis and Dissertation Repository

Chemical transformations of molecular materials induced by high pressure and light radiation exhibit novel and intriguing aspects that have attracted much attention in recent years. Particularly, under the two stimuli, entire transformations of molecular species can be realized in condensed phases without employing additional chemical constraints, e.g., the need of solvents, catalysts or radical initiators. This new synthetic approach in chemistry therefore satisfies increasing need for production methods with reduced environmental impacts. Motivated by these promises, my Ph. D thesis focuses on this state-of-the-art branch of high-pressure photochemistry. Specifically, high pressure is employed to create the necessary reaction conditions to …


Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang 2018 The University of Western Ontario

Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang

Electronic Thesis and Dissertation Repository

Cyclic tetrapyrroles, like porphyrins, phthalocyanines, and chlorins, are of great interest for dye-sensitized solar cell (DSSC) applications due to their highly versatile structure, tunable π based spectroscopic and electrochemical properties, and excellent stabilities. As well, they have a structural analogy with chlorophyll, a natural photosensitizer. Chlorophylls exhibit a red and intense lowest energy absorption band that is one of the ideal properties of a dye for application in DSSCs. However, because chlorophylls are unstable, it is necessary to design similar but more stable tetrapyrroles with these ideal properties. The relationship between chlorophyll’s geometric structure and spectral properties were first explored …


Removal Of Acid Yellow 25 From Aqueous Solution By Chitin Prepared From Waste Snow Crab Legs, Chin-Chuan Wei, Inoka K. Pathiraja, Emily Fabry, Kyle Schafer, Nick Schimp, Tuo-Ping Hu, Lawrence P. Norcio 2018 Southern Illinois University Edwardsville

Removal Of Acid Yellow 25 From Aqueous Solution By Chitin Prepared From Waste Snow Crab Legs, Chin-Chuan Wei, Inoka K. Pathiraja, Emily Fabry, Kyle Schafer, Nick Schimp, Tuo-Ping Hu, Lawrence P. Norcio

SIUE Faculty Research, Scholarship, and Creative Activity

Acid Yellow 25 (AY25) is used in the textile industry for dyeing of natural and synthetic fibers, and is also used as a coloring agent in paints, inks, plastics, and leathers. Effluents from such industries are major sources of water pollution. Hence, it is important to find simple, efficient, and inexpensive ways to remove these dyes from wastewater. Here, we determined the suitability of chitin extracted from waste crab legs as an adsorbent for removing AY25 dye. The adsorption kinetics was modeled using pseudo-first order, pseudo-second order, and intraparticle diffusion equations to determine the rate controlling step. Results showed that …


Development Of Mof@Polymer Composite Materials Through Bottom-Up Self-Assembly Techniques, Roberto C. Arbulu 2018 University of New Mexico

Development Of Mof@Polymer Composite Materials Through Bottom-Up Self-Assembly Techniques, Roberto C. Arbulu

Chemistry and Chemical Biology ETDs

MOF-based mixed matrix membranes (MMMs) are a promising new class of MOF/polymer composite materials. Currently, fabrication of MMMs is based on top-down methods with limited control over MOF positioning, integration, or morphology. This work focuses on the growth of well-defined one-dimensional (1-D) MOF nanostructures within the pores of a nanoporous polymer template, either commercially available or through the self-assembly of block co-polymers having tailor-designed surface functionalities. Studies were conducted using zeolitic imidazole framework-8 (ZIF-8) and polycarbonate track etched (PCTE) membranes, which demonstrated the feasibility of the outlined approach, and revealed the formation of distinct super- and nanostructures with controlled morphologies …


Thermosetting Polymers Via Azide Alkyne Cycloaddition, Richard H. Cooke III 2018 University of Southern Mississippi

Thermosetting Polymers Via Azide Alkyne Cycloaddition, Richard H. Cooke Iii

Dissertations

This dissertation exploits properties inherent to azide-alkyne cycloaddition and applies practical solutions to difficult problems. Chapter II addresses structure-property relationships in glassy azido-alkyne matrices by varying the identity of the central linkage within tetrapropargyl bis-aniline-type crosslinkers, and by the addition or omission of Cu(I) catalyst. This systematic study showed that an ether or methylene linkage yielded lower melting tetrapropargyl crosslinkers that were soluble in, and produced homogeneous, networks when cured with, a standard azido resin, di(3-azido-2-hydroxypropyl) ether of bisphenol-A; in contrast, a sulfone linkage yielded a relatively insoluble crosslinker and poorly dispersed, heterogeneous networks when reacted with the same …


Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs 2018 Western Kentucky University

Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs

Masters Theses & Specialist Projects

Gold monolayer-protected nanoclusters (MPCs) with average diameters of 1-5 nm protected by alkane- and arenethiolates were synthesized. Mixed-monolayer protected nanoparticles (MMPCs) were prepared by functionalizing hexanethiolate-protected MPCs with either 11-mercaptoundecanoic acid (MUA-MMPC), 11-mercaptoundecanol (MUO-MMPC), or 4-aminothiophenol (ATP-MMPC) using ligand place exchange. Presentation of various chemical reagents such as nucleophile, acid, or base and change in physical environment through ultrasonic and thermal irradiation resulted in changes to particles and their physical properties. Thermogravimetric analysis (TGA) was used to measure maximum temperature of the derivated thermogravimetric peaks (Tmax,DTG) as a means of comparing temperature dependence of mass loss. The absorption spectrum within …


Digital Commons powered by bepress