Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

3,331 Full-Text Articles 1,775 Authors 4,649,888 Downloads 80 Institutions

All Articles in Applied Mechanics

Faceted Search

3,331 full-text articles. Page 1 of 33.

Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell 2021 University of Arkansas, Fayetteville

Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell

Mechanical Engineering Undergraduate Honors Theses

This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated.


Methods For Mass Data Acquisition Of Whiskey Webs., Adam D. Carrithers 2020 University of Louisville

Methods For Mass Data Acquisition Of Whiskey Webs., Adam D. Carrithers

Electronic Theses and Dissertations

Whiskey webs are a recently discovered phenomenon in which the monolayer collapse during evaporation of diluted American whiskey results in self-assembled, web-like structures. It was found that the pattern of weblike structures were unique between different American whiskey products. It is desirable to use these unique patterns as a “fingerprint” which can be used to identify whiskeys, their chemical constituents, and perhaps even counterfeits. In pursuit of identifying whiskey products based on their web pattern, it is necessary to have a large database of samples imaged for each product. The device discussed herein is the realization of an apparatus capable ...


Leaf Angle Extractor: A High‐Throughput Image Processing Framework For Leaf Angle Measurements In Maize And Sorghum, Sunil K. Kenchanmane Raju, Miles Adkins, Alex Enersen, Daniel Santana de Carvalho, Anthony J. Studer, Baskar Ganapathysubramanian, Patrick S. Schnable, James C. Schnable 2020 University of Nebraska - Lincoln

Leaf Angle Extractor: A High‐Throughput Image Processing Framework For Leaf Angle Measurements In Maize And Sorghum, Sunil K. Kenchanmane Raju, Miles Adkins, Alex Enersen, Daniel Santana De Carvalho, Anthony J. Studer, Baskar Ganapathysubramanian, Patrick S. Schnable, James C. Schnable

Mechanical Engineering Publications

PREMISE: Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment.

METHODS: High-throughput ...


Automated Trichome Counting In Soybean Using Advanced Image‐Processing Techniques, Seyed Vahid Mirnezami, Therin Young, Teshale Assefa, Shelby Prichard, Koushik Nagasubramanian, Kulbir Sandhu, Soumik Sarkar, Sriram Sundararajan, Matthew E. O'Neal, Baskar Ganapathysubramanian, Arti Singh 2020 Iowa State University

Automated Trichome Counting In Soybean Using Advanced Image‐Processing Techniques, Seyed Vahid Mirnezami, Therin Young, Teshale Assefa, Shelby Prichard, Koushik Nagasubramanian, Kulbir Sandhu, Soumik Sarkar, Sriram Sundararajan, Matthew E. O'Neal, Baskar Ganapathysubramanian, Arti Singh

Mechanical Engineering Publications

Premise Trichomes are hair‐like appendages extending from the plant epidermis. They serve many important biotic roles, including interference with herbivore movement. Characterizing the number, density, and distribution of trichomes can provide valuable insights on plant response to insect infestation and define the extent of plant defense capability. Automated trichome counting would speed up this research but poses several challenges, primarily because of the variability in coloration and the high occlusion of the trichomes.

Methods and Results We developed a simplified method for image processing for automated and semi‐automated trichome counting. We illustrate this process using 30 leaves from ...


Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey 2020 California Polytechnic State University, San Luis Obispo

Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey

Mechanical Engineering

Spring loaded camming devices or “cams” are used in traditional rock climbing as a means of active fall protection. Climbers place cams in cracks and fissures in the rock wall. The cam’s lobes press against the walls, locking it in place, anchoring the climber in case of a fall. Currently, there is a lack of large cams on the market. Only two small companies produce cams that are usable in cracks 6.5 inches wide and larger, however their designs are either too heavy and/or lack features to be comfortable. We are a group of mechanical engineering students ...


Automated Drone Calibration System, Jackie Kelly Jong-Mee Paik, Zach Nathan Richter, Tyler Wilson Van Den Berg, Ryan Alexander Zhan, Matthew Ward Carlson 2020 California Polytechnic State University, San Luis Obispo

Automated Drone Calibration System, Jackie Kelly Jong-Mee Paik, Zach Nathan Richter, Tyler Wilson Van Den Berg, Ryan Alexander Zhan, Matthew Ward Carlson

Mechanical Engineering

The final design review of the Inspired Flight Calibration Team senior project will detail the process used to complete a verification prototype of a drone calibration device and discuss lessons learned and suggestions for improving this device. Going from brainstorming and conceptual prototyping all the way through verification prototyping and testing, we were able to design a gyroscopic device that met Inspired Flight’s needs for the flight sensor calibration of their drones. The mechanical design involved comprehensive CAD models and hands-on manufacturing. The mechatronics side of the project worked heavily with electrical wiring and writing custom software to communicate ...


Design Of Structural Stand For High-Precision Optics Microscopy, Sara T. Novell 2020 California Polytechnic State University, San Luis Obispo

Design Of Structural Stand For High-Precision Optics Microscopy, Sara T. Novell

Master's Theses

Lawrence Livermore National Lab (LLNL) is home to the National Ignition Facility (NIF), the world’s largest and most energetic laser. Each of the 192 beamlines contains dozens of large optics, which require offline damage inspection using large, raster-scanning microscopes. The primary microscope used to measure and characterize the optical damage sites has a precision level of 1 µm. Mounted in a class 100 clean room with a raised tile floor, the microscope is supported by a steel stand that structurally connects the microscope to the concrete ground. Due to ambient vibrations experienced in the system, the microscope is only ...


In-Service Performance Evaluation Of Concrete Sloped End Treatments In Iowa, Jessica Lingenfelter 2020 University of Nebraska - Lincoln

In-Service Performance Evaluation Of Concrete Sloped End Treatments In Iowa, Jessica Lingenfelter

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Sloped end treatments were historically developed as low-cost, low-maintenance end treatments for rigid features like concrete barriers and bridge rails. Crash testing indicated that sloped end treatments are associated with significant instability for impacting vehicles. However, the in-service performance of these features has not been evaluated. An in-service performance evaluation (ISPE) was performed to evaluate vehicle crashes with sloped end treatments in Iowa between 2008 and 2017. Researchers generated a geographic inventory of sloped end treatment locations, reviewed crash narratives and scene diagrams for crashes near these sloped end treatments, and calculated an estimated crash rate and crash cost for ...


Golf Swing Trainer Using Wii Balance Board, Brooks M. Leftwich, Nicholas Hassler, Clark A. Hall, Sam Gates, Thomas B. Vickery, Alec Rinehart, Zakkary B A Compton, Ryan A. Singley 2020 University of Tennessee, Knoxville

Golf Swing Trainer Using Wii Balance Board, Brooks M. Leftwich, Nicholas Hassler, Clark A. Hall, Sam Gates, Thomas B. Vickery, Alec Rinehart, Zakkary B A Compton, Ryan A. Singley

Chancellor’s Honors Program Projects

No abstract provided.


Sae Baja Drivetrain, Troy Von Gillern, Kaitlyn Elmer, Nathan Tabor 2020 Olivet Nazarene University

Sae Baja Drivetrain, Troy Von Gillern, Kaitlyn Elmer, Nathan Tabor

Scholar Week 2016 - present

A project to optimize the drivetrain on the ONU SAE Baja Team vehicle.


Fluid Power Vehicle Challenge, Jacob Torrey, Kayla Londono, Bryson Chan, Aaron Trujillo 2020 California Polytechnic State University, San Luis Obispo

Fluid Power Vehicle Challenge, Jacob Torrey, Kayla Londono, Bryson Chan, Aaron Trujillo

Mechanical Engineering

The FPVC combines mechanical engineering disciplines to design and manufacture a vehicle that utilizes hydraulic power. The FDR covers the final manufacturing process and verification processes developed during the front end of research and analysis built upon the Critical Design Review (CDR) and the PDR (Preliminary Design Review). This report showcases the design decisions and extensive research that supports the continuing efforts by the Team Pump My Ride, to build upon the accomplishments of Cal Poly’s previous team, The Incompressibles. The FDR presents how Team Pump My Ride produced the design changes from the CDR and PDR to achieve ...


Supermileage Vehicle Drivetrain Design, Griffin M. Kraemer, Kai Meter, Arya Mahdavian 2020 California Polytechnic State University, San Luis Obispo

Supermileage Vehicle Drivetrain Design, Griffin M. Kraemer, Kai Meter, Arya Mahdavian

Mechanical Engineering

The current Cal Poly Supermileage team has faced issues regarding the efficiency and durability of their SMV vehicle’s drivetrain. After conducting research to solve their current issues, we developed a final drivetrain configuration that will improve the performance and life of the vehicle. This report outlines some of the completed research including: a table of designs used by other teams, a table of patents that can be applied to our design, and a list of technical literature we can use to better our design. It also summarizes our goals and objectives, including a table of the engineering specifications of ...


Tabletop Mechanical Tester, Jamie Dombroski, Andrew Shirk, Richard Leffler, Brian English 2020 The University of Akron

Tabletop Mechanical Tester, Jamie Dombroski, Andrew Shirk, Richard Leffler, Brian English

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and ...


Zips Electric Racing Suspension Design, Madison Hughes, Christopher Thompson, Erikah Jackson, Anna Signorino 2020 The University of Akron

Zips Electric Racing Suspension Design, Madison Hughes, Christopher Thompson, Erikah Jackson, Anna Signorino

Williams Honors College, Honors Research Projects

I am working with three others on the suspension and steering sybsystems for the Zips Electric Racing design team at The University of Akron. We are improving upon last year's design to help create an optimized vehicle. As part of this project, we take part in weekly design reviews and team meetings, model parts in Solidworks, and perform simulations and FEA using MATLAB/SIMULINK, Solidworks, and Optimum Kinematics.


Automated Runout Measurement Tool, Ethan Tisch 2020 The University of Akron

Automated Runout Measurement Tool, Ethan Tisch

Williams Honors College, Honors Research Projects

A new measurement process and tool is to be developed to improve the existing method for measuring runout on the commutators of brushed DC product.

After an armature is manufactured, the commutator is inspected by placing the completed rotor assembly in one of several non-standard measurement fixtures. An indicator is then positioned on the commutator. A trained operator proceeds to rotate the armature while taking runout and bar-to-bar measurement at various positions along the length of the commutator.

This existing process is slow, costly, and unreliable. For these reasons, there is substantial economic pressure to develop a superior method for ...


Human Powered Vehicle Internal Systems Design, Zachary Broadbent, Jordan Boos, Patrick Gaertner, Caleb Miner 2020 The University of Akron

Human Powered Vehicle Internal Systems Design, Zachary Broadbent, Jordan Boos, Patrick Gaertner, Caleb Miner

Williams Honors College, Honors Research Projects

The objective of this design project is to redesign the seat and steering system for the Human Powered Vehicle Team. The goal of the seat design is too improve ergonomics by making it more comfortable and adjustable. In making the seat adjustable, it will be easier for drivers to achieve an optimal efficiency when pedaling. The aim for steering will be to improve the ergonomics as well as performance by analyzing steering systems in the past and evaluating how each design was successful and for what reason. Another main goal of the steering system will be improving the stability and ...


Hilti Circular Saw Redesign 2020, Lucas Whitmer 2020 The University of Akron

Hilti Circular Saw Redesign 2020, Lucas Whitmer

Williams Honors College, Honors Research Projects

The M.K. Morse company currently produces a 6 1/2 inch circular saw blade for the power tool company Hilti. The design has many areas for improvement and can be made at a reduced cost. Our group plans to use our knowledge that we have gained in our academic careers and the knowledge we gained on co-op to improve the life and reduce the overall cost of production of this blade. We plan to use Thirdwave Finite Element Analysis Cutting Software to test different tip geometries and a design of experiments to test the blade in the various construction ...


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud 2020 Michigan Technological University

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a ...


Modeling Thin Fluid Film On A Rotary Bell, Mark Doerre 2020 University of Kentucky

Modeling Thin Fluid Film On A Rotary Bell, Mark Doerre

Theses and Dissertations--Mechanical Engineering

A component of the mission in the Institute of Research for Technology Development at the University of Kentucky is advancing research and development and bringing it to the factory floor for continuous improvement. This dissertation delves into the art and science of rotational fluid mechanics in the context of rotary bell atomizers. One outcome proves that an approximation for calculating fluid film thicknesses on high-speed spinning surfaces inferred while working in cylindrical and spherical coordinate systems can be applied to an arbitrary bell profile. However, the analytical limits of this approximation were not investigated. In all cases, a restriction exists ...


Very High Cycle Fatigue Behavior Of Laser Beam-Powder Bed Fused Inconel 718 Considering The Layer Orientation And Surface Finish Effects, Palmer Frye 2020 University of North Florida

Very High Cycle Fatigue Behavior Of Laser Beam-Powder Bed Fused Inconel 718 Considering The Layer Orientation And Surface Finish Effects, Palmer Frye

UNF Graduate Theses and Dissertations

Additive Manufacturing (AM) techniques have recently gained popularity for fabrication of parts used in aerospace applications. Some of these parts may be subjected to cyclic loading at very high frequencies, leading to service life requirements exceeding ten-million cycles (>107 cycles). Therefore, understanding the very high-cycle fatigue (VHCF) behavior of these AM parts is an important step in their design and qualification processes. In this thesis, both high-cycle fatigue (HCF) and VHCF behaviors of Inconel 718, a Ni-base superalloy, manufactured via a Laser Beam-Powder Bed Fusion (LB-PBF) process, are investigated. Uniaxial, fully reversed force-controlled fatigue tests were conducted utilizing a ...


Digital Commons powered by bepress