Open Access. Powered by Scholars. Published by Universities.®

Other Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

4,829 Full-Text Articles 3,388 Authors 974,607 Downloads 82 Institutions

All Articles in Other Mechanical Engineering

Faceted Search

4,829 full-text articles. Page 1 of 102.

Design, Development And Evaluation Of The Ruggedized Edge Computing Node (Recon), Sahil Girin Patel 2022 Mississippi State University

Design, Development And Evaluation Of The Ruggedized Edge Computing Node (Recon), Sahil Girin Patel

Theses and Dissertations

The increased quality and quantity of sensors provide an ever-increasing capability to collect large quantities of high-quality data in the field. Research devoted to translating that data is progressing rapidly; however, translating field data into usable information can require high performance computing capabilities. While high performance computing (HPC) resources are available in centralized facilities, bandwidth, latency, security and other limitations inherent to edge location in field sensor applications may prevent HPC resources from being used in a timely fashion necessary for potential United States Army Corps of Engineers (USACE) field applications. To address these limitations, the design requirements for RECON …


Molecular Dynamics Of High Temperature Hydrogen Attack, Mike Travis Bodden Connor 2022 Mississippi State University

Molecular Dynamics Of High Temperature Hydrogen Attack, Mike Travis Bodden Connor

Theses and Dissertations

High temperature hydrogen attack (HTHA) is a damage mechanism that only affects carbon steel and low alloy material. Most of the data regarding HTHA are experimental-driven. Even though this approach has been successful, there are still much more things that the oil and gas industry does not understand about HTHA. The regions that were considered safe (below the Nelson curves) have experienced catastrophic failure. Our research consists of performing Molecular Dynamics (MD) and the Nudge Elastic Band (NEB) calculation of HTHA to better understand the atomistic behavior of this damage mechanism.


Callaway Measurement Device, Andre S. Fisher, Roman Hays, Blake Sousa, Grant Gabrielson 2022 California Polytechnic State University, San Luis Obispo

Callaway Measurement Device, Andre S. Fisher, Roman Hays, Blake Sousa, Grant Gabrielson

Mechanical Engineering

The purpose of this document is to illustrate the Callaway Measurement Device senior project from start to finish. The challenge given to the team was to update and improve a gauge used by Callaway employees to measure the loft, lie, and face angle of their full spectrum of golf clubs. Once the team understood how the pre-existing gauge operates, the team conducted background research into other technologies that could improve the gauge. The team decided to digitalize the device amongst other tweaks to reduce error. Because the CAD files were not available for the pre-existing device, the team began reverse …


High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang 2022 University of Nebraska-Lincoln

High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a …


Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese 2022 Clemson University

Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese

All Theses

Shape memory alloys (SMAs) describe a group of smart metallic materials that can be deformed by external magnetic, thermal, or mechanical influence and then returned to a predetermined shape through the cycling of temperature or stress. They have several advantages, such as having excellent mechanical properties, being low cost, and being easily manufactured, while also providing a compact size, completely silent operation, high work density, and requiring less maintenance over time. SMAs can undergo sold-to-solid phase transformations, and it is because of these phase transformations that they can experience shape memory effect (SME); or the ability to recover from a …


An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster 2022 Clemson University

An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster

All Theses

This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical …


Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri 2022 Clemson University

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri

All Dissertations

The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature.

This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while …


Mechanics Modeling Of Non-Rigid Origami: From Qualitative To Quantitative Accuracy, Jiayue Tao 2022 Clemson University

Mechanics Modeling Of Non-Rigid Origami: From Qualitative To Quantitative Accuracy, Jiayue Tao

All Dissertations

Origami, the ancient art of paper folding, has recently evolved into a design and fabrication framework for various engineering systems at vastly different scales: from large-scale deployable airframes to mesoscale biomedical devices to small-scale DNA machines. The increasingly diverse applications of origami require a better understanding of the fundamental mechanics and dynamics induced by folding. Therefore, formulating a high-fidelity simulation model for origami is crucial, especially when large amplitude deformation/rotation exists during folding.

The currently available origami simulation models can be categorized into three branches: rigid-facet models, bar-hinge models, and finite element models. The first branch of models assumes that …


Image Based Processing For Weld Defect Detection, Shems-Eddine Belhout 2022 University of Tennessee Knoxville

Image Based Processing For Weld Defect Detection, Shems-Eddine Belhout

Masters Theses

There is a growing need for automation in the welding industry due to a growing shortage in skilled welders. TIG [Tungsten Inert Gas] welding, a method of welding that uses an electrode shielded by gas and is fed externally by a wire, is incredibly advantageous for its precise heat control. TIG welding is considered the standard for nuclear application which requires highly precise welds to be performed. Robotic welding can address this issue, and one major problem that occurs during welding is welding defects. Typical weld defect detection requires a highly knowledgeable welder or destructive and nondestructive evaluation. Destructive evaluation …


Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan 2022 University of Nebraska Medical Center

Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan

Mechanical & Materials Engineering Faculty Publications

Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, antiinflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. …


Sculpting Charge In Graphene Through Patterned Strain, Dylan J. Balter, Jenna Smith 2022 Purdue University

Sculpting Charge In Graphene Through Patterned Strain, Dylan J. Balter, Jenna Smith

The Journal of Purdue Undergraduate Research

No abstract provided.


Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang 2022 Zhejiang University

Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang

Mechanical & Materials Engineering Faculty Publications

Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the …


Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar 2022 Marwadi University

Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar

Mechanical & Materials Engineering Faculty Publications

Although different materials and designs have been tried in search of the ideal as well as ultrawideband light absorber, achieving ultra-broadband and robust unpolarized light absorption over a wide angular range has proven to be a major issue. Light-field regulation capabilities provided by optical metamaterials are a potential new technique for perfect absorbers. It is our goal to design and demonstrate an ultra-wideband solar absorber for the ultraviolet to a mid-infrared region that has an absorptivity of TE/TM light of 96.2% on average. In the visible, NIR, and MIR bands of the solar spectrum, the absorbed energy is determined to …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu 2022 Florida Institute of Technology

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie 2022 University of Nebraska Medical Center

A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie

Mechanical & Materials Engineering Faculty Publications

Due to their biomimetic properties, electrospun nanofibers have been widely used in neurobiology studies. However, mechanistic understanding of cell-nanofiber interactions is challenging based on the current in vitro culture systems due to the lack of control of spatiotemporal patterning of cells and difficulty in monitoring single cell behavior. To overcome these issues, we apply microfluidic technology in combination with electrospun nanofibers for in vitro studies of interactions between neurons and nanofiber materials. We demonstrate a unique nanofiber embedded microfluidic device which contains patterned aligned or random electrospun nanofibers as a new culture system. With this device, we test how different …


Preface For Millard Beatty, E. Baesu, Roger Fosdick 2022 University of Nebraska-Lincoln

Preface For Millard Beatty, E. Baesu, Roger Fosdick

Mechanical & Materials Engineering Faculty Publications

Professor Beatty has contributed a wide variety of research papers and book articles on topics in finite elasticity, continuum mechanics and classical mechanics, including some fundamental experimental work. His works are clear and informative and expose a didactic quality. In the following, we briefly touch upon some of the highlights of his research involvement throughout the years.


Effect Of Passive Clean Air Injection Into The Wake Region Of A Moving Ground Vehicle, Angelos Kaminis 2022 Embry-Riddle Aeronautical University

Effect Of Passive Clean Air Injection Into The Wake Region Of A Moving Ground Vehicle, Angelos Kaminis

Doctoral Dissertations and Master's Theses

The wake region on a moving ground vehicle is responsible for 70% of the aerodynamic drag when the speed of 90km/h is achieved. The topic of wake region manipulation has been revisited multiple times and with varying techniques. When manipulating the flow utilizing a fully passive method, pressure drag can be reduced, increasing the overall performance of the vehicle. To ensure high velocity fluid injection, a venturi shaped roof was implemented with an inlet size of 352mm x 12.7mm, and 2 outlets of size 88.011mm x 25.4mm resulting in an area of 4,470.959 for both inlet and outlet to maintain …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers 2022 University of Nebraska-Lincoln

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Mechanical & Materials Engineering Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers 2022 University of Nebraska-Lincoln

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Mechanical & Materials Engineering Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi 2022 University of Nebraska-Lincoln

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi

Mechanical & Materials Engineering Faculty Publications

Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …


Digital Commons powered by bepress