Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,461 Full-Text Articles 3,456 Authors 418,794 Downloads 69 Institutions

All Articles in Catalysis and Reaction Engineering

Faceted Search

1,461 full-text articles. Page 27 of 54.

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti 2017 University of New Mexico

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …


What Happens To Nox Emissions Of Vw Diesel Cars When Water/Methanol Injection Is Used?, Andrew Croxell 2017 Southern Illinois University Carbondale

What Happens To Nox Emissions Of Vw Diesel Cars When Water/Methanol Injection Is Used?, Andrew Croxell

ASA Multidisciplinary Research Symposium

Volkswagen has come under fire for their "Clean Diesel" automobiles that were found to emit too much NOx (Oxides of Nitrogen) when driven on the street. Since NOx is created by high temperature combustion events, the addition of a water/methanol injection system was tested on a VW diesel vehicle to identify if it could cool combustion temperatures and thus reduce NOx to an acceptable specification.


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi 2017 University of Massachusetts Amherst

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel 2017 University of Massachusetts Amherst

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Ga And In Modified Ceria As A Support For Cobalt Fischer-Tropsch Synthesis, Muthu Kumaran Gnanamani, Gary Jacobs, Wilson D. Shafer, Michela Martinelli, Donald C. Cronauer, A. Jeremy Kropf, Christopher L. Marshall, Burtron H. Davis 2017 University of Kentucky

Ga And In Modified Ceria As A Support For Cobalt Fischer-Tropsch Synthesis, Muthu Kumaran Gnanamani, Gary Jacobs, Wilson D. Shafer, Michela Martinelli, Donald C. Cronauer, A. Jeremy Kropf, Christopher L. Marshall, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

Ceria modified by the addition of gallium or indium (20 mol%) was used as a support for cobalt Fischer-Tropsch synthesis. The addition of gallium to ceria improved the CO conversion for cobalt, whereas indium tended to decrease it. A similar trend was observed with the Ag-promoted cobalt/ceria catalysts that were doped with Ga or In. For Ag promoted catalysts, doping with Ga or In decreased methane and increased the product selectivities of olefins and alcohols. The sum of olefins and alcohols in terms of product selectivity for the Ag-promoted catalysts decreased in the following order: Ag-Co/Ce-Ga > Ag-Co/Ce-In > Ag-Co/Ce. The H2-TPR-XANES …


Thermo-Stability And Active Site Structure Of Fe/N/C Electrocatalyst For Oxygen Reduction Reaction, Chi CHEN, Yu-jiao LAI, Zhi-you ZHOU, Xin-sheng ZHANG, Shi-gang SUN 2017 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China;

Thermo-Stability And Active Site Structure Of Fe/N/C Electrocatalyst For Oxygen Reduction Reaction, Chi Chen, Yu-Jiao Lai, Zhi-You Zhou, Xin-Sheng Zhang, Shi-Gang Sun

Journal of Electrochemistry

The development of Fe/N/C electrocatalyst for oxygen reduction reaction (ORR) is vital for the large-scale applications of proton exchange membrane fuel cells. Understanding the active site structure will contribute to the rational design of highly active catalysts. In this study, the as-prepared Fe/N/C catalyst based on poly-m-phenylenediamine (PmPDA-FeNx/C) catalyst with the high ORR activity was subjected to the high-temperature heat treatment again at 1000 ~1500 oC. The degradation of in the ORR activity of PmPDA-FeNx/C by with various heat treatments was correlated to the change of elemental compositions, chemical states and textural properties. As the …


A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-rui ZHANG, Li-qiang HU, Bao-zhu ZHANG 2017 Henan Xinlianxin Chemical Fertilizer Company, Xinxiang, Henan, 410700;

A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-Rui Zhang, Li-Qiang Hu, Bao-Zhu Zhang

Journal of Electrochemistry

In recent years, the development of lithium ion batteries (LIBs) has been limited due to the insufficient lithium resource and increasing cost. As a promising candidate, sodium ion batteries (SIBs) with the similar electrochemical mechanism and lower cost than LIBs are developing rapidly. However, as a result of the larger radius of Na+ compared with Li+, the crystalline structures of the most electrode materials are damaged severely during the intercalation of Na+, which limits the electrochemical properties of SIBs. Thus, developing new types of electrode materials for SIBs is particularly important. Among the cathode materials, …


Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee 2017 University of Maine

Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee

Electronic Theses and Dissertations

Due to the environmental considerations, depletion of fossil fuel reserves and fluctuating non-renewable fuel price, converting non-edible lignocellulosic biomass into renewable energy resources has gained significant importance. Phenol has been chosen as a model compound for catalytic screening because it is abundant in bio-oil composition and shows a high resistance to oxygen removal during hydrodeoxygenation (HDO) reactions. HDO of phenol produces chemicals that can be used as transportation fuels (Aromatics) or fuel additives. Theoretically, HDO of phenol has two distinct reduction pathways: direct deoxygenation (DDO) and hydrogenation (HYD). The previous results published by our group showed a precedent activity and …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen 2017 University of Maine

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


Catalytic Oxidation And Depolymerization Of Lignin In Aqueous Ionic Liquid, Lalitendu Das, Siquan Xu, Jian Shi 2017 University of Kentucky

Catalytic Oxidation And Depolymerization Of Lignin In Aqueous Ionic Liquid, Lalitendu Das, Siquan Xu, Jian Shi

Biosystems and Agricultural Engineering Faculty Publications

Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H2O2 as oxidizing agent in a batch reactor. CoCl2 and …


Hydrodynamics In The Gas-Driven Inverse Liquid-Solid Fluidized Bed, Jiaqi Huang 2017 The University of Western Ontario

Hydrodynamics In The Gas-Driven Inverse Liquid-Solid Fluidized Bed, Jiaqi Huang

Electronic Thesis and Dissertation Repository

A novel reactor named Gas-Driven Inverse Liquid-Solid Fluidized Bed (GDFB for short) was developed in this research. A vertical baffle divides the column into a riser and a downer. Inverse fluidization is driven by the gas and occurs in the downer, where hydrodynamics and their influencing factors were studied. In the solid-baffle system, four fluidization regimes were observed, including the packed bed, semi-fluidized bed, fully-fluidized bed, and circulating bed. Bed expansion ratio was higher for particles with a higher density and a smaller solids loading. Moreover, the average particle velocity was proportional to superficial gas velocity and higher for denser …


Kinetics Of Glycerol Conversion To Hydrocarbon Fuels Over Pd/H-Zsm-5 Catalyst, Yang Xiao, Arvind Varma 2017 Purdue University

Kinetics Of Glycerol Conversion To Hydrocarbon Fuels Over Pd/H-Zsm-5 Catalyst, Yang Xiao, Arvind Varma

Yang Xiao

The utilization of glycerol, primary byproduct of biodiesel production, is important to enhance process economics. In our recent prior work, it was shown that glycerol can be converted to hydrocarbon fuels over bifunctional catalysts, containing a noble metal supported on H-ZSM-5. Over Pd/H-ZSM-5 catalyst, an optimal ∼60% yield of hydrocarbon fuels was obtained. In the present work, based on experimental data over Pd/H-ZSM-5 catalyst, a lumped reaction network and kinetic model are developed. Using differential kinetic experiments over the temperature range 300–450°C, the rate constants, reaction orders, and activation energies are obtained for each reaction step. The predicted values match …


Modeling The Aqueous-Phase Copper Ion-Exchange Behavior Onto Ssz-13 Zeolites, Brian N. Bayer, Rajamani Gounder, Trevor M. Lardinois 2017 Purdue University

Modeling The Aqueous-Phase Copper Ion-Exchange Behavior Onto Ssz-13 Zeolites, Brian N. Bayer, Rajamani Gounder, Trevor M. Lardinois

The Summer Undergraduate Research Fellowship (SURF) Symposium

Copper-exchanged zeolites are utilized as catalysts for the selective catalytic reduction of nitrogen oxides, which are atmospheric pollutants found in diesel engine exhaust. The total amount of copper ions and the types of copper species (Cu(II) or Cu(II)OH) exchanged onto a zeolite can be varied. Copper is exchanged onto SSZ-13 (an aluminosilicate zeolite with the chabazite topology) during a process known as aqueous ion exchange, where the zeolite is mixed in a copper-containing solution. The distribution of copper on SSZ-13 is influenced by exchange conditions, including the molarity, temperature, and pH of the copper solution. The effect of exchange conditions …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson 2017 University of Tennessee, Knoxville

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Enhancements In Mass Transfer For Carbon Capture Solvents Part I: Homogeneous Catalyst, Leland R. Widger, Moushumi Sarma, Jonathan J. Bryant, David S. Mannel, Jesse G. Thompson, Cameron A. Lippert, Kunlei Liu 2017 University of Kentucky

Enhancements In Mass Transfer For Carbon Capture Solvents Part I: Homogeneous Catalyst, Leland R. Widger, Moushumi Sarma, Jonathan J. Bryant, David S. Mannel, Jesse G. Thompson, Cameron A. Lippert, Kunlei Liu

Center for Applied Energy Research Faculty and Staff Publications

The novel small molecule carbonic anhydrase (CA) mimic [CoIII(Salphen-COO)Cl]HNEt3 (1), was synthesized as an additive for increasing CO2 absorption rates in amine-based post-combustion carbon capture processes (CCS), and its efficacy was verified. 1 was designed for use in a kinetically slow but thermally stable blended solvent, containing the primary amines 1-amino-2-propanol (A2P) and 2-amino-2-methyl-1-propanol (AMP). Together, the A2P/AMP solvent and 1 reduce the overall energy penalty associated with CO2 capture from coal-derived flue gas, relative to the baseline solvent MEA. 1 is also effective at increasing absorption kinetics of kinetically fast solvents, such …


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash 2017 University of New Mexico

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion size greatly …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont 2017 University of New Mexico

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho 2017 University of Massachusetts Amherst

Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho

Doctoral Dissertations

Growing environmental concerns associated with diminishing reserves of fossil fuels has led to accelerated research efforts towards the discovery of new catalytic processes for converting renewable lignocellulosic biomass into value-added chemicals. For this conversion, nanoporous solid acid materials have been widely used because of their excellent hydrothermal stability and molecular sieving capability. In the thesis, hierarchical Lewis acid zeolites with ordered mesoporosity and MFI topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were successfully synthesized within the confined space of three dimensionally ordered mesoporous (3DOm) carbon by a seeded growth method. The obtained 3DOm-i Sn-MFI showed at least 3 times …


Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer 2017 University of Arkansas, Fayetteville

Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer

Middle School Lesson Plans

Automobiles produce a large amount of heat generated by the burning of gasoline. Burning gasoline is a chemical reaction that causes a phase change. This is called combustible energy. During combustion fuel combines with oxygen to release energy (such as heat, light, sound) along with another product that is often considered waste. Most of the energy produced is not used to power the automobile, but is released as heat. 19.3 pounds of the greenhouse gas, carbon dioxide, is produced from the combustion of 1 gallon of U.S. gasoline according to the U.S. Energy Information Administration.


Ionic Liquid-Supported Tempo/Polymeric Ionic-Liquid/Carbon Black Ternary Composites: Preparations And Applications In Electrochemical Oxidation Of Alcohols, Xin LIN, Cao-cao SUN, Zhi-rong LIU, Cheng-chu ZENG 2017 School of Chemistry, biology & Materials Science, East China University of Technology, Nanchang 330013;

Ionic Liquid-Supported Tempo/Polymeric Ionic-Liquid/Carbon Black Ternary Composites: Preparations And Applications In Electrochemical Oxidation Of Alcohols, Xin Lin, Cao-Cao Sun, Zhi-Rong Liu, Cheng-Chu Zeng

Journal of Electrochemistry

To effectively recover redox catalyst and supporting electrolyte, a novel ternary composite consisting of ionic liquid-supported TEMPO, polymeric ionic-liquid and carbon black was prepared. The ionic-liquid supported redox catalyst TEMPO-IL-BF4 was firstly synthesized from 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and followed by the reaction of polydimethyldiallylammonium chloride (PDDA) and bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) to form poly[diallyldimethylammonium bis(trifluoromethanesulfonyl)imide] (PDDA(Tf2N)). A combination of the above mentioned two synthesized materials and carbon black afforded to obtain the ternary composite, which was used as the recoverable supporting electrolyte and mediator for the electrochemical oxidation of alcohol. The results indicate that various alcohols could be oxidized …


Digital Commons powered by bepress