Open Access. Powered by Scholars. Published by Universities.®

Applied Statistics Commons

Open Access. Powered by Scholars. Published by Universities.®

3,477 Full-Text Articles 4,841 Authors 2,591,145 Downloads 165 Institutions

All Articles in Applied Statistics

Faceted Search

3,477 full-text articles. Page 1 of 106.

Statistical Consulting In Academia: A Review, Ke Xiao 2024 University of Windsor

Statistical Consulting In Academia: A Review, Ke Xiao

Major Papers

This paper reviews the state of statistical consulting in academia by performing a literature review on this topic in chapters 1 and 2. Chapter 1 overviews general aspects of statistical consulting and types of centers that conduct such services in academia. In Chapter 2 we summarise the literature about the common logistics and processes for conducting statistical consulting in academia. In Chapters 3 and 4, we analyze data on statistical consulting centers for the largest 100 universities in the USA. We also review the literature on the future of statistical consulting in academia in the era of big data and …


Formulating An Efficient Statistical Test Using The Goodness Of Fit Approach With Applications To Real-Life Data, S. A. Qaid, S. E. Abo Youssef Prof., Mahmoud Mansour 2024 Department of Mathematics, Faculty of Education, Abyan University, Abyan, Yemen

Formulating An Efficient Statistical Test Using The Goodness Of Fit Approach With Applications To Real-Life Data, S. A. Qaid, S. E. Abo Youssef Prof., Mahmoud Mansour

Basic Science Engineering

Statistical tests are very important for researchers to make decisions. In particular, when the tests are non-parametric, they are of greater importance because they can be applied to a wide range of data sets regardless of knowing the distribution of these data. Researchers are therefore racing to obtain efficient tests for making good decisions based on the results of these tests. In this study, NBU (2)L was used based on the goodness of fit approach to present an efficient statistical test. The efficiency of the proposed test was computed, and the results were compared to those of other tests. Critical …


Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen 2024 Wilfrid Laurier University

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


Measuring The Performance Of Sdgs In Provincial Level Using Regional Sustainable Development Index, Nurafiza Thamrin, Ika Yuni Wulansari, Puguh Bodro Irawan 2023 BPS - Statistics Solok Regency

Measuring The Performance Of Sdgs In Provincial Level Using Regional Sustainable Development Index, Nurafiza Thamrin, Ika Yuni Wulansari, Puguh Bodro Irawan

Journal of Environmental Science and Sustainable Development

Measuring the national and sub-national progress in achieving such globally adopted development agendas as Sustainable Development Goals (SDGs) is particularly challenging due to data availability and compatibility of indicators to measure SDGs, especially in Indonesia. This paper attempts to measure the performance of sustainable development at the regional level in Indonesia by newly constructing a multidimensional composite index called the Regional Sustainable Development Index (RSDI). RSDI comprises four dimensions, covering comprehensive economic, social, environmental, and governance indicators. By applying factor analysis, the paper assesses the uncertainty of RSDI and the sensitivity of its composing indicators, then further investigates the relationship …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Ohio Recovery Housing: Resident Risk And Outcomes Assessment, Elyjiah Potter, Bivin Sadler 2023 Southern Methodist University

Ohio Recovery Housing: Resident Risk And Outcomes Assessment, Elyjiah Potter, Bivin Sadler

SMU Data Science Review

Addiction and substance abuse disorder is a significant problem in the United States. Over the past two decades, the United States has faced a boom in substance abuse, which has resulted in an increase in death and disruption of families across the nation. The State of Ohio has been particularly hard hit by the crisis, with overdose rates nearly doubling the national average. Established in the mid 1970’s Sober Living Housing is an alcohol and substance use recovery model emphasizing personal responsibility, sober living, and community support. This model has been adopted by the Ohio Recovery Housing organization, which seeks …


Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. McClure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre 2023 Southern Methodist University

Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. Mcclure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre

SMU Data Science Review

Hair is found in over 90% of crime scenes and has long been analyzed as trace evidence. However, recent reviews of traditional hair fiber analysis techniques, primarily morphological examination, have cast doubt on its reliability. To address these concerns, this study employed machine learning algorithms, specifically Linear Discriminant Analysis (LDA) and Random Forest, on Direct Analysis in Real Time time-of-flight mass spectra collected from human, cat, and dog hair samples. The objective was to develop a chemistry- and statistics-based classification method for unbiased taxonomic identification of hair. The results of the study showed that LDA and Random Forest were highly …


Is The Declining Birthrate Really An Issue For The Economy?, Harsh Ramesh Pednekar, Theodore Lee, Darrion Chin 2023 Embry-Riddle Aeronautical University

Is The Declining Birthrate Really An Issue For The Economy?, Harsh Ramesh Pednekar, Theodore Lee, Darrion Chin

Introduction to Research Methods RSCH 202

This study aims to explore the complex implications of declining birth rates on the economy, focusing on GDP per capita as a crucial metric, and aims to uncover both potential opportunities and challenges stemming from this demographic transformation using regression analysis. Using a quantitative methodology and secondary data from OECD.stat, World Population Review, and World Bank, the study explores the relationship between declining birth rates and economic impacts. GDP per capita serves as an essential dependent variable, and it accounts for control variables such as labour force participation, literacy, and education levels, child dependence ratio, and physical capital. Past studies …


Parameter Estimation For Patient Enrollment In Clinical Trials, Junyan Liu 2023 William & Mary

Parameter Estimation For Patient Enrollment In Clinical Trials, Junyan Liu

Undergraduate Honors Theses

In this paper, we study the Poisson-gamma model for recruitment time in clinical trials. We proved several properties of this model that match our intuitions from a reliability perspective, did simulations on this model, and used different optimization methods to estimate the parameters. Although the behaviors of the optimization methods were unfavorable and unstable, we identified certain conditions and provided potential explanations for this phenomenon and further insights into the Poisson-gamma model.


Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury 2023 California Polytechnic State University, San Luis Obispo

Foundations Of Memory Capacity In Models Of Neural Cognition, Chandradeep Chowdhury

Master's Theses

A central problem in neuroscience is to understand how memories are formed as a result of the activities of neurons. Valiant’s neuroidal model attempted to address this question by modeling the brain as a random graph and memories as subgraphs within that graph. However the question of memory capacity within that model has not been explored: how many memories can the brain hold? Valiant introduced the concept of interference between memories as the defining factor for capacity; excessive interference signals the model has reached capacity. Since then, exploration of capacity has been limited, but recent investigations have delved into the …


Data Quality Checks: Implementation With Popular Data Collection Crowdsourcing Platforms, James Down, Gregory Balkcom, Kristine Duncan, Ngan (An) Truong, Andrew Lewis 2023 Kennesaw State University

Data Quality Checks: Implementation With Popular Data Collection Crowdsourcing Platforms, James Down, Gregory Balkcom, Kristine Duncan, Ngan (An) Truong, Andrew Lewis

Symposium of Student Scholars

The utilization of online crowdsourcing platforms for data collection has increased over the past two decades in the field of public health due to the ease of use, the cost-saving benefits, the speed of the data collection process, and the accessibility of a potentially true representative population. Although these platforms offer many advantages to researchers, significant drawbacks exist, such as poor data quality, that threaten the reliability and validity of the study. Previous studies have examined data quality concerns, but differences in results arise due to variations in study designs, disciplinary contexts, and the platforms being investigated. Therefore, this study …


The Impacts Of The Covid-19 Pandemic On Mental Health Across Different Genders And Sexualities, Jiale Zhu, Jonas Katona 2023 Miss Porter's School

The Impacts Of The Covid-19 Pandemic On Mental Health Across Different Genders And Sexualities, Jiale Zhu, Jonas Katona

Undergraduate Research Journal for the Human Sciences

Current studies report an increase in psychological distress as a result of the COVID-19 pandemic. This study is interested in examining mental health disparities and how the COVID-19 pandemic has disproportionately impacted marginalized groups—and more specifically, those identified by sex, gender, and sexuality—compared with the general population. This study also considers the effects and ramifications of different policy measures taken during the course of the pandemic. We perform exploratory data modeling and analysis on several important and publicly available datasets taken during the pandemic on mental health and COVID-19 infection data across various identity groups to look for significant disparities, …


Nonparametric Derivative Estimation Using Penalized Splines: Theory And Application, Bright Antwi Boasiako 2023 University of Massachusetts Amherst

Nonparametric Derivative Estimation Using Penalized Splines: Theory And Application, Bright Antwi Boasiako

Doctoral Dissertations

This dissertation is in the field of Nonparametric Derivative Estimation using
Penalized Splines. It is conducted in two parts. In the first part, we study the L2
convergence rates of estimating derivatives of mean regression functions using penalized splines. In 1982, Stone provided the optimal rates of convergence for estimating derivatives of mean regression functions using nonparametric methods. Using these rates, Zhou et. al. in their 2000 paper showed that the MSE of derivative estimators based on regression splines approach zero at the optimal rate of convergence. Also, in 2019, Xiao showed that, under some general conditions, penalized spline estimators …


Baa-Ttling Sore Mouth In Sheep With Mathematical Modeling, David C. Elzinga, W. Christopher Strickland 2023 University of Wisconsin-La Crosse

Baa-Ttling Sore Mouth In Sheep With Mathematical Modeling, David C. Elzinga, W. Christopher Strickland

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Msis-Glenn: Natural Selection In Wolves Leads To Domesticated Dogs Predicted By Agent-Based Model Simulations, Alex Capaldi, David C. Elzinga 2023 James Madison University

Msis-Glenn: Natural Selection In Wolves Leads To Domesticated Dogs Predicted By Agent-Based Model Simulations, Alex Capaldi, David C. Elzinga

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Incorporating Interventions To An Extended Seird Model With Vaccination: Application To Covid-19 In Qatar, Elizabeth B. Amona 2023 Virginia Commonwealth University

Incorporating Interventions To An Extended Seird Model With Vaccination: Application To Covid-19 In Qatar, Elizabeth B. Amona

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Modeling Of The Impact Of Lobbying On Climate Policy, Andrew Jacoby, Claire Hannah, James Hutchinson, Jasmine Narehood, Aditi Ghosh, Padmanabhan Seshaiyer 2023 Jack M Barrack Hebrew Academy

Mathematical Modeling Of The Impact Of Lobbying On Climate Policy, Andrew Jacoby, Claire Hannah, James Hutchinson, Jasmine Narehood, Aditi Ghosh, Padmanabhan Seshaiyer

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


The Relationship Between Pets Owned And Gender Amongst College Students, Eman Asghar, Bryce Camuso, Josh Feirick 2023 Harrisburg University of Science and Technology

The Relationship Between Pets Owned And Gender Amongst College Students, Eman Asghar, Bryce Camuso, Josh Feirick

Harrisburg University Research Symposium: Highlighting Research, Innovation, & Creativity

There is a gap between the number of men and women that own dogs. The Mintel Press Team states that "71% of men aged 18-44 own a dog compared to 60% of their female counterparts" (Mintel Press Team, 2016, para: 1). While this statistic includes people who are college-aged, it does not mention college students specifically. Thus, research into the relationship between pets owned and gender amongst college students is an important topic that warrants looking into.


Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian 2023 University of Minnesota - Twin Cities

Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian

I-GUIDE Forum

Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or …


Bayesian Statistical Modeling Of Spatially Resolved Transcriptomics Data, Xi Jiang 2023 Southern Methodist University

Bayesian Statistical Modeling Of Spatially Resolved Transcriptomics Data, Xi Jiang

Statistical Science Theses and Dissertations

Spatially resolved transcriptomics (SRT) quantifies expression levels at different spatial locations, providing a new and powerful tool to investigate novel biological insights. As experimental technologies enhance both in capacity and efficiency, there arises a growing demand for the development of analytical methodologies.

One question in SRT data analysis is to identify genes whose expressions exhibit spatially correlated patterns, called spatially variable (SV) genes. Most current methods to identify SV genes are built upon the geostatistical model with Gaussian process, which could limit the models' ability to identify complex spatial patterns. In order to overcome this challenge and capture more types …


Digital Commons powered by bepress