The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test,
2023
Florida Institute of Technology - Melbourne
The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test, Michael Scott Harwin
Theses and Dissertations
This study examined the relationship between a set of targeted factors and the total flight time students needed to become ready to take the private pilot check ride. The study was grounded in Ebbinghaus’s (1885/1913/2013) forgetting curve theory and spacing effect, and Ausubel’s (1963) theory of meaningful learning. The research factors included (a) training time to proficiency, which represented the number of training days needed to become check-ride ready; (b) flight training program (Part 61 vs. Part 141); (c) organization offering the training program (2- or 4-year college/university vs. FBO); (d) scheduling policy (mandated vs. student-driven); and demographical variables, which …
Using Geographic Information To Explore Player-Specific Movement And Its Effects On Play Success In The Nfl,
2023
Southern Methodist University
Using Geographic Information To Explore Player-Specific Movement And Its Effects On Play Success In The Nfl, Hayley Horn, Eric Laigaie, Alexander Lopez, Shravan Reddy
SMU Data Science Review
American Football is a billion-dollar industry in the United States. The analytical aspect of the sport is an ever-growing domain, with open-source competitions like the NFL Big Data Bowl accelerating this growth. With the amount of player movement during each play, tracking data can prove valuable in many areas of football analytics. While concussion detection, catch recognition, and completion percentage prediction are all existing use cases for this data, player-specific movement attributes, such as speed and agility, may be helpful in predicting play success. This research calculates player-specific speed and agility attributes from tracking data and supplements them with descriptive …
Forecasting Covid-19 With Temporal Hierarchies And Ensemble Methods,
2023
University of Massachusetts Amherst
Forecasting Covid-19 With Temporal Hierarchies And Ensemble Methods, Li Shandross
Masters Theses
Infectious disease forecasting efforts underwent rapid growth during the COVID-19 pandemic, providing guidance for pandemic response and about potential future trends. Yet despite their importance, short-term forecasting models often struggled to produce accurate real-time predictions of this complex and rapidly changing system. This gap in accuracy persisted into the pandemic and warrants the exploration and testing of new methods to glean fresh insights.
In this work, we examined the application of the temporal hierarchical forecasting (THieF) methodology to probabilistic forecasts of COVID-19 incident hospital admissions in the United States. THieF is an innovative forecasting technique that aggregates time-series data into …
Indirect Aggression And Victimization: Investigating Instrument Psychometrics, Gender Differences, And Its Relationship To Social Information Processing,
2023
Duquesne University
Indirect Aggression And Victimization: Investigating Instrument Psychometrics, Gender Differences, And Its Relationship To Social Information Processing, Taylor Steeves
Electronic Theses and Dissertations
The study of indirect bullying behaviors, relational aggression and social aggression, has been of theoretical importance and interest to researchers and psychologists within the last few decades. In this investigation, using a convenience sample of 451 late adolescents attending a private university in the mid-Atlantic U.S., I examined the factor structure of two measures of indirect bullying, the Young Adult Social Behavior Scale – Victim (YASB-V) and the Young Adult Social Behavior Scale – Perpetrator (YASB-P). Using confirmatory factor analysis (CFA), I found that the YASB-V comprised a four-factor model, differing from the model that had been identified in the …
Modeling Biphasic, Non-Sigmoidal Dose-Response Relationships: Comparison Of Brain- Cousens And Cedergreen Models For A Biochemical Dataset,
2023
Virginia Commonwealth University
Modeling Biphasic, Non-Sigmoidal Dose-Response Relationships: Comparison Of Brain- Cousens And Cedergreen Models For A Biochemical Dataset, Venkat D. Abbaraju, Tamaraty L. Robinson, Brian P. Weiser
Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship
Biphasic, non-sigmoidal dose-response relationships are frequently observed in biochemistry and pharmacology, but they are not always analyzed with appropriate statistical methods. Here, we examine curve fitting methods for “hormetic” dose-response relationships where low and high doses of an effector produce opposite responses. We provide the full dataset used for modeling, and we provide the code for analyzing the dataset in SAS using two established mathematical models of hormesis, the Brain-Cousens model and the Cedergreen model. We show how to obtain and interpret curve parameters such as the ED50 that arise from modeling, and we discuss how curve parameters might change …
Stressor: An R Package For Benchmarking Machine Learning Models,
2023
Utah State University
Stressor: An R Package For Benchmarking Machine Learning Models, Samuel A. Haycock
All Graduate Theses and Dissertations, Spring 1920 to Summer 2023
Many discipline specific researchers need a way to quickly compare the accuracy of their predictive models to other alternatives. However, many of these researchers are not experienced with multiple programming languages. Python has recently been the leader in machine learning functionality, which includes the PyCaret library that allows users to develop high-performing machine learning models with only a few lines of code. The goal of the stressor package is to help users of the R programming language access the advantages of PyCaret without having to learn Python. This allows the user to leverage R’s powerful data analysis workflows, while simultaneously …
Statistical Graph Quality Analysis Of Utah State University Master Of Science Thesis Reports,
2023
Utah State University
Statistical Graph Quality Analysis Of Utah State University Master Of Science Thesis Reports, Ragan Astle
All Graduate Theses and Dissertations, Spring 1920 to Summer 2023
Graphical software packages have become increasingly popular in our modern world, but there are concerns within the statistical visualization field about the default settings provided by these packages, which can make it challenging to create good quality graphs that align with standard graph principles. In this thesis, we investigate whether the quality of graphs from Utah State University (USU) Plan A Master of Science (MS) thesis reports from the years 1930 to 2019 was affected by the rise of graphical software packages. We collected all data stored on the USU Digital Commons website since November 2021 to determine the specific …
A Comparison Of Confidence Intervals In State Space Models,
2023
Southern Methodist University
A Comparison Of Confidence Intervals In State Space Models, Jinyu Du
Statistical Science Theses and Dissertations
This thesis develops general procedures for constructing confidence intervals (CIs) of the error disturbance parameters (standard deviations) and transformations of the error disturbance parameters in time-invariant state space models (ssm). With only a set of observations, estimating individual error disturbance parameters accurately in the presence of other unknown parameters in ssm is a very challenging problem. We attempted to construct four different types of confidence intervals, Wald, likelihood ratio, score, and higher-order asymptotic intervals for both the simple local level model and the general time-invariant state space models (ssm). We show that for a simple local level model, both the …
On Image Response Regression With High-Dimensional Data,
2023
University of Windsor
On Image Response Regression With High-Dimensional Data, Noah Fuerth
Major Papers
A recent issue in statistical analysis is modelling data when the effect variable
changes at different locations. This can be difficult to accomplish when the dimensions
of the covariates are very high, and when the domain of the varying coefficient
functions of predictors are not necessarily regular. This research paper will investigate
a method to overcome these challenges by approximating the varying coefficient
functions using bivariate splines. We do this by splitting the domain of the varying
coefficient functions into a number of triangles, and build the bivariate spline functions
based on this triangulation. This major paper will outline detailed …
Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies,
2023
The University of Western Ontario
Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies, Alexandru M. Draghici
Electronic Thesis and Dissertation Repository
Mark-recapture (MR) models typically assume that individuals under study have independent survival and recapture outcomes. One such model of interest is known as the Cormack-Jolly-Seber (CJS) model. In this dissertation, we conduct three major research projects focused on studying the impact of violating the independence assumption in MR models along with presenting extensions which relax the independence assumption. In the first project, we conduct a simulation study to address the impact of failing to account for pair-bonded animals having correlated recapture and survival fates on the CJS model. We examined the impact of correlation on the likelihood ratio test (LRT), …
Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time,
2023
Eastern Virginia Medical School
Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr
Biology and Medicine Through Mathematics Conference
No abstract provided.
Predicting Dengue Incidence In Central Argentina Using Google Trends Data,
2023
Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina
Predicting Dengue Incidence In Central Argentina Using Google Trends Data, Sahil Chindal, Elizabet Estallo, Yanjun Qian, Michael Robert
Biology and Medicine Through Mathematics Conference
No abstract provided.
Public Acceptance Of Guidance And Regulations For Space Flight Participation,
2023
Embry-Riddle Aeronautical University
Public Acceptance Of Guidance And Regulations For Space Flight Participation, Cory Trunkhill, Robert Joslin, Joseph Keebler
Journal of Aviation Technology and Engineering
Space flight participants are not professional astronauts and not subject to the rules and guidance covering space flight crewmembers. Ordinal logistic regression of survey data was utilized to explore public acceptance of current medical screening recommendations and regulations for safety risk and implied liability for civil space flight participation. Independent variables constituted participant demographic representations while dependent variables represented current Federal Aviation Administration guidance and regulations. Odds ratios were derived based on the demographic categories to interpret likelihood of acceptance for the criteria. Significant likely acceptance of guidance and regulations was found for five of twelve demographic variables influencing public …
Evaluating Models Of Scanpath Prediction,
2023
University of Tübingen
Evaluating Models Of Scanpath Prediction, Matthias Kümmerer, Matthias Bethge
MODVIS Workshop
No abstract provided.
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning,
2023
Southern Methodist University
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning, Mary Lena Bleile
Statistical Science Theses and Dissertations
Tumor xenograft experiments are a popular tool of cancer biology research. In a typical such experiment, one implants a set of animals with an aliquot of the human tumor of interest, applies various treatments of interest, and observes the subsequent response. Efficient analysis of the data from these experiments is therefore of utmost importance. This dissertation proposes three methods for optimizing cancer treatment and data analysis in the tumor xenograft context. The first of these is applicable to tumor xenograft experiments in general, and the second two seek to optimize the combination of radiotherapy with immunotherapy in the tumor xenograft …
Movie Recommender System Using Matrix Factorization,
2023
University of Central Florida
Movie Recommender System Using Matrix Factorization, Roland Fiagbe
Data Science and Data Mining
Recommendation systems are a popular and beneficial field that can help people make informed decisions automatically. This technique assists users in selecting relevant information from an overwhelming amount of available data. When it comes to movie recommendations, two common methods are collaborative filtering, which compares similarities between users, and content-based filtering, which takes a user’s specific preferences into account. However, our study focuses on the collaborative filtering approach, specifically matrix factorization. Various similarity metrics are used to identify user similarities for recommendation purposes. Our project aims to predict movie ratings for unwatched movies using the MovieLens rating dataset. We developed …
Comparing Hierarchical Data Structures And Hierarchical Data Analysis,
2023
Loyola Marymount University
Comparing Hierarchical Data Structures And Hierarchical Data Analysis, Halley Jeanne Dante, Robert Rovetti
Honors Thesis
Real world data is inherently noisy and data analysis can be especially complex when noise is compounded in hierarchical and multilevel data structures. Since such data structures can be described using multiple approaches, the way data is collapsed and grouped within these structures can influence its resulting interpretation and analyses. To avoid discrepancies in data collapsing and grouping, multiple statistical approaches have been developed specifically to analyze multilevel data structures. Examples of multilevel statistical models are the two-factor ANOVA and the general linear model with repeated-measures (GLM-RR) which is typically used in the context of looking at change over time. …
Factors Affecting Apothecia Production And Primary Infection By Monilinia Vaccinii-Corymbosi On Vaccinium Angustifolium,
2023
University of Maine
Factors Affecting Apothecia Production And Primary Infection By Monilinia Vaccinii-Corymbosi On Vaccinium Angustifolium, Ian Leonard
Electronic Theses and Dissertations
Mummy berry, caused by Monilinia vaccinii-corymbosi (MVC), is a prolific disease of Vaccinium angustifolium (wild blueberry) leading to decreased yield in wild blueberry fields throughout the Downeast (DE) and Midcoast (MC) regions of Maine (ME). This study aimed to identify factors affecting primary inoculum production and infection by MVC on wild blueberry, and what bud stages of wild blueberry are most susceptible to infection. Through common garden (CGE), field and incubation experiments conducted in 2021 and 2022, factors affecting carpogenic germination of MVC pseudosclerotia and relationships between susceptible wild blueberry buds and environmental factors were analyzed. The CGE conducted in …
A Probabilistic Exploration Of Food Supplementation And Assistance,
2023
Murray State University
A Probabilistic Exploration Of Food Supplementation And Assistance, Logan Mattingly
Honors College Theses
Food insecurity is a stark threat that grips our country and affects households throughout our country. Dietary insufficiency manifests itself in ways that affect health and public safety. According to researchers, individuals who suffer from food insecurity have a higher risk of aggression, anxiety, suicide ideation and depression. These problems tend to occur unequally distributed among those households with lower income. In this work, an exploratory analysis within these data sets will be performed to examine the socio-economic, biographical, nutritional, and geographical principal components of food insecurity among survey participants and how the US Supplemental Nutrition Assistance Program (SNAP) effects …
Hispanic Human Capital And Financial Aid Application In The West Census Region,
2023
California State University, Monterey Bay
Hispanic Human Capital And Financial Aid Application In The West Census Region, Benjamin Lundy-Paine
Capstone Projects and Master's Theses
As of 2021, very few Hispanic residents in the United States held a college degree in comparison to non-Hispanic residents. Research has shown that, particularly for Hispanic students, financial aid increases college persistence. Hispanic Free Application for Federal Student Aid (FAFSA) submission rates rank among the lowest, preventing many Hispanic students from receiving financial assistance. This issue is most prevalent West Census Region (WCR), where there is the highest concentration of Hispanic residents. To understand what barriers may be preventing Hispanic submission in the WCR this Capstone used logistic regression models to analyze student-level data from the National Center for …
