Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

1,249 Full-Text Articles 1,880 Authors 717,686 Downloads 142 Institutions

All Articles in Statistical Models

Faceted Search

1,249 full-text articles. Page 1 of 47.

Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr 2023 Eastern Virginia Medical School

Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr

Biology and Medicine Through Mathematics Conference

No abstract provided.


Predicting Dengue Incidence In Central Argentina Using Google Trends Data, Sahil Chindal, Elizabet Estallo, Yanjun Qian, Michael Robert 2023 Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina

Predicting Dengue Incidence In Central Argentina Using Google Trends Data, Sahil Chindal, Elizabet Estallo, Yanjun Qian, Michael Robert

Biology and Medicine Through Mathematics Conference

No abstract provided.


Bridging The Chasm Between Fundamental, Momentum, And Quantitative Investing, Allen Hoskins, Jeff Reed, Robert Slater 2023 Southern Methodist University

Bridging The Chasm Between Fundamental, Momentum, And Quantitative Investing, Allen Hoskins, Jeff Reed, Robert Slater

SMU Data Science Review

A chasm exists between the active public equity investment management industry's fundamental, momentum, and quantitative styles. In this study, the researchers explore ways to bridge this gap by leveraging domain knowledge, fundamental analysis, momentum, crowdsourcing, and data science methods. This research also seeks to test the developed tools and strategies during the volatile time period of 2020 and 2021.


Comparison Of Sampling Methods For Predicting Wine Quality Based On Physicochemical Properties, Robert Burigo, Scott Frazier, Eli Kravez, Nibhrat Lohia 2023 Southern Methodist University

Comparison Of Sampling Methods For Predicting Wine Quality Based On Physicochemical Properties, Robert Burigo, Scott Frazier, Eli Kravez, Nibhrat Lohia

SMU Data Science Review

Using the physicochemical properties of wine to predict quality has been done in numerous studies. Given the nature of these properties, the data is inherently skewed. Previous works have focused on handful of sampling techniques to balance the data. This research compares multiple sampling techniques in predicting the target with limited data. For this purpose, an ensemble model is used to evaluate the different techniques. There was no evidence found in this research to conclude that there are specific oversampling methods that improve random forest classifier for a multi-class problem.


A New Generalized Gamma-Weibull Distribution And Its Applications, Nihimat Iyebuhola Aleshinloye, Samuel Adewale Aderoju, Alfred Adewole Abiodun, Bako Lukmon Taiwo 2023 Department of Mathematics and Statistics, Kwara State University, Malete P.M.B. 1530, Ilorin, Nigeria

A New Generalized Gamma-Weibull Distribution And Its Applications, Nihimat Iyebuhola Aleshinloye, Samuel Adewale Aderoju, Alfred Adewole Abiodun, Bako Lukmon Taiwo

Al-Bahir Journal for Engineering and Pure Sciences

In this paper, a New Generalized Gamma-Weibull (NGGW) distribution is developed by compounding Weibull and generalized gamma distribution. Some mathematical properties such as moments, Rényi entropy and order statistics are derived and discussed. The maximum likelihood estimation (MLE) method is used to estimate the model parameters. The proposed model is applied to two real-life datasets to illustrate its performance and flexibility as compared to some other competing distributions. The results obtained show that the new distribution fits each of the data better than the other competing distributions.


That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling, Mary Bernstein 2023 University of South Carolina - Columbia

That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling, Mary Bernstein

Senior Theses

A rise in online religious communities and the growth of so-called ‘Old World’ religions are reflected in the internet’s subcultures of Neopaganism, a growing religious movement that has been documented in America since the 1960s. The religions under this umbrella movement vary drastically and include belief systems such as Wicca, Druidry, and deity worship. Belief systems under this movement lack the traditional hierarchy found in structured religion and lack a singular sacred text. As such, believers usually find and support one another not through a physical sacred place of meeting, but through an online community that acts as sacred space. …


Beyond Machine Learning: An Fmri Domain Adaptation Model For Multi-Study Integration, Lauryn Michelle Burleigh 2023 Louisiana State University

Beyond Machine Learning: An Fmri Domain Adaptation Model For Multi-Study Integration, Lauryn Michelle Burleigh

LSU Doctoral Dissertations

Traditional machine learning analyses are challenging with functional magnetic
resonance imaging (fMRI) data, not only because of the amount of data that needs to be
collected, adding a particular challenge for human fMRI research, but also due to the change in
hypothesis being addressed with various analytical techniques. Domain adaptation is a type of
transfer learning, a step beyond machine learning which allows for multiple related, but not
identical, data to contribute to a model, can be beneficial to overcome the limitation of data
needed but may address different hypothesis questions than anticipated given the analysis
computation. This dissertation assesses …


Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps), Juan E. Nunez, Roger W. Tchegui Donfack, Rohit Rohit, Hayley Horn 2023 Southern Methodist University

Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps), Juan E. Nunez, Roger W. Tchegui Donfack, Rohit Rohit, Hayley Horn

SMU Data Science Review

Today, there is an increased risk to data privacy and information security due to cyberattacks that compromise data reliability and accessibility. New machine learning models are needed to detect and prevent these cyberattacks. One application of these models is cybersecurity threat detection and prevention systems that can create a baseline of a network's traffic patterns to detect anomalies without needing pre-labeled data; thus, enabling the identification of abnormal network events as threats. This research explored algorithms that can help automate anomaly detection on an enterprise network using Canadian Institute for Cybersecurity data. This study demonstrates that Neural Networks with Bayesian …


Analyzing Relationships With Machine Learning, Oscar Ko 2023 The Graduate Center, City University of New York

Analyzing Relationships With Machine Learning, Oscar Ko

Dissertations, Theses, and Capstone Projects

Procedurally, this project aims to take a dataset, analyze it, and offer insights to the audience in an easy-to-digest format. Conceptually, this project will seek to explore questions like: “Do couples that meet through online dating or dating apps have higher or lower quality relationships?”, “Can any features in this dataset help predict how a subject would rate their relationship quality?”, and “What other insights can I derive from using machine learning for exploratory analysis?” The intended audience for this project is anyone interested in romantic relationships or machine learning.

The dataset is from a Stanford University survey, “How Couples …


Biasing Estimator To Mitigate Multicollinearity In Linear Regression Model, Abdulrasheed Bello Badawaire, Issam Dawoud, Adewale Folaranmi Lukman, Victoria Laoye, Arowolo Olatunji 2023 Department of Mathematics and Statistics, Federal University Wukari, Wukari, Nigeria

Biasing Estimator To Mitigate Multicollinearity In Linear Regression Model, Abdulrasheed Bello Badawaire, Issam Dawoud, Adewale Folaranmi Lukman, Victoria Laoye, Arowolo Olatunji

Al-Bahir Journal for Engineering and Pure Sciences

A new two-parameter estimator was developed to combat the threat of multicollinearity for the linear regression model. Some necessary and sufficient conditions for the dominance of the proposed estimator over ordinary least squares (OLS) estimator, ridge regression estimator, Liu estimator, KL estimator, and some two-parameter estimators are obtained in the matrix mean square error sense. Theory and simulation results show that, under some conditions, the proposed two-parameter estimator consistently dominates other estimators considered in this study. The real-life application result follows suit.


On Partially Observed Tensor Regression, Dinara Miftyakhetdinova 2023 University of Windsor

On Partially Observed Tensor Regression, Dinara Miftyakhetdinova

Major Papers

Tensor data is widely used in modern data science. The interest lies in identifying and characterizing the relationship between tensor datasets and external covariates. These datasets, though, are often incomplete. An efficient nonconvex alternating updating algorithm proposed by J. Zhou et al. in the paper "Partially Observed Dynamic Tensor Response Regression" provides a novel approach. The algorithm handles the problem of unobserved entries by solving an optimization problem of a loss function under the low-rankness, sparsity, and fusion constraints. This analysis aims to understand in detail the proposed algorithms and their theoretical proofs with, potentially, dropping some of the assumptions …


Informative Hypothesis For Group Means Comparison, Dr. Teck Kiang Tan 2023 National University of Singapore

Informative Hypothesis For Group Means Comparison, Dr. Teck Kiang Tan

Practical Assessment, Research, and Evaluation

Researchers often have hypotheses concerning the state of affairs in the population from which they sampled their data to compare group means. The classical frequentist approach provides one way of carrying out hypothesis testing using ANOVA to state the null hypothesis that there is no difference in the means and proceed with multiple comparisons if the null hypothesis is rejected. As this approach is not able to incorporate order, inequality, and direction into hypothesis testing, and neither does it able to specify multiple hypotheses, this paper introduces the informative hypothesis that allows more flexibility in stating hypothesis testing and is …


Uniformity Test Based On The Empirical Bernstein Distribution, Ran Sun 2023 University of Windsor

Uniformity Test Based On The Empirical Bernstein Distribution, Ran Sun

Major Papers

In this paper, we firstly review the origin of Bernstein polynomial and the various application of it. Then we review the importance of goodness-of-fit test, especially the uniformity test, and we examine lots of different test statistics proposed by far. After that we suggest two new statistics for testing the uniformity. These two statistics are based on Komogorov-Smirnov test type and Cramér-Von Mises test type, respectively. Also we embed Bernstein polynomial into those test type and take advantage of great approximation performance of this polynomial. Finally, we run a Monte-Carlo simulation to compare the performance of our statistics to those …


Application Of Sentiment Analysis And Machine Learning Techniques To Predict Daily Cryptocurrency Price Returns, Edward Wu 2023 Claremont Colleges

Application Of Sentiment Analysis And Machine Learning Techniques To Predict Daily Cryptocurrency Price Returns, Edward Wu

CMC Senior Theses

This paper examines the effects of social media sentiment relating to Bitcoin on the daily price returns of Bitcoin and other popular cryptocurrencies by utilizing sentiment analysis and machine learning techniques to predict daily price returns. Many investors think that social media sentiment affects cryptocurrency prices. However, the results of this paper find that social media sentiment relating to Bitcoin does not add significant predictive value to forecasting daily price returns for each of the six cryptocurrencies used for analysis and that machine learning models that do not assume linearity between the current day price return and previous daily price …


Aircraft Damage Classification By Using Machine Learning Methods, Tüzün Tolga İnan 2023 Bahcesehir University

Aircraft Damage Classification By Using Machine Learning Methods, Tüzün Tolga İnan

International Journal of Aviation, Aeronautics, and Aerospace

Safety is the most significant factor that affected incidents (non-fatal) and accidents (fatal) in civil aviation history related to scheduled flights. In the history of scheduled flights, the total incident and accident number until 2022 is 1988. In this study, 677 of them are taken into consideration since 11 September 2001. The purpose of this study is to reveal the factors that can classify type of aircraft damages such as none, minor and substantial in all-time incidents and accidents. ML algorithms with different configurations are applied for the classification process. The RFE and PCA are used to find the most …


Statistical Models For Decision-Making In Professional Soccer, Sean Hellingman 2023 Wilfrid Laurier University

Statistical Models For Decision-Making In Professional Soccer, Sean Hellingman

Theses and Dissertations (Comprehensive)

As soccer is widely regarded as the most popular sport in the world there is high interest in methods of improving team performances. There are many ways teams and individual athletes can influence their own performances during competition. This thesis focuses on developing statistical methodologies for improving competition-based decision-making for soccer so as to allow professional soccer teams to make better informed decisions regarding player selection and in-game decision-making.

To properly capture the dynamic actions of professional soccer, Markov chains with increasing complexity are proposed. These models allow for the inclusion of potential changes in the process caused by goals …


Study On Innovation Networks And Its Spillover Effect Of China’S New Energy Automobile Industry, Zhifei XIONG, Wenzhong ZHANG 2022 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Study On Innovation Networks And Its Spillover Effect Of China’S New Energy Automobile Industry, Zhifei Xiong, Wenzhong Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

The network spillover effect of knowledge has been playing an increasingly significant role in the development of industrial innovation. The urban cooperation matrix of China’s new energy automobile industry is built based on new energy automobile patent data, and the structure and evolution process of China’s new energy automobile industry are depicted. On this basis, the spatial Dubin model (SDM) is used to calculate the network spillover effect, and its results are compared with the results of spillover effect based on the relationship of spatial contiguity and distance of cities. The results show that the innovation activities of China’s new …


Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu 2022 Clemson University

Learning Graphical Models Of Multivariate Functional Data With Applications To Neuroimaging, Jiajing Niu

All Dissertations

This dissertation investigates the functional graphical models that infer the functional connectivity based on neuroimaging data, which is noisy, high dimensional and has limited samples. The dissertation provides two recipes to infer the functional graphical model: 1) a fully Bayesian framework 2) an end-to-end deep model.

We first propose a fully Bayesian regularization scheme to estimate functional graphical models. We consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao et al. (2019).. We then propose a regularization strategy via the graphical horseshoe. We compare both Bayesian approaches to the frequentist functional graphical lasso, and compare the …


Evaluation Of Circular Logistic Regression Models With Asymmetrical Link Functions, Feridun Tasdan 2022 Illinois State University

Evaluation Of Circular Logistic Regression Models With Asymmetrical Link Functions, Feridun Tasdan

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Estimating R0 For Dengue Emergence In Central Argentina Using Statistical Models, Sahil Chindal 2022 Illinois State University

Estimating R0 For Dengue Emergence In Central Argentina Using Statistical Models, Sahil Chindal

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Digital Commons powered by bepress