Open Access. Powered by Scholars. Published by Universities.®

Longitudinal Data Analysis and Time Series Commons

Open Access. Powered by Scholars. Published by Universities.®

449 Full-Text Articles 752 Authors 220,126 Downloads 75 Institutions

All Articles in Longitudinal Data Analysis and Time Series

Faceted Search

449 full-text articles. Page 1 of 17.

The Double Edged Sword Of The Pandemic: Exploring Associations Between Covid-19 And Social Isolation In The Usa, Alexander Fulk 2023 University of Kansas

The Double Edged Sword Of The Pandemic: Exploring Associations Between Covid-19 And Social Isolation In The Usa, Alexander Fulk

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


The Influence Of Framing And Recent Experience On Farmer Choices In Experimental Games Depicting Risk-Reducing Agricultural Technologies, Ana Maria Ospina Tobar 2023 University of Maine

The Influence Of Framing And Recent Experience On Farmer Choices In Experimental Games Depicting Risk-Reducing Agricultural Technologies, Ana Maria Ospina Tobar

Electronic Theses and Dissertations

Climate change is a major threat to food security, particularly in low and middle-income countries that are highly dependent on staple crops for subsistence. The vulnerability of staple crops, like maize, in the face of climate change, is increasing due to the increasing frequency of droughts. This thesis aims to evaluate two mechanisms through which farmers may be more willing to adopt new technologies that increase their resilience to climate change: First, I evaluate the effectiveness of a new virtual maize farming game as a learning tool to teach farmers about the outcomes they could obtain under different weather events …


Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods, Miguel E. Bonilla Jr., Jason McDonald, Tamas Toth, Bivin Sadler 2023 Southern Methodist University

Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods, Miguel E. Bonilla Jr., Jason Mcdonald, Tamas Toth, Bivin Sadler

SMU Data Science Review

In recent years, various new Machine Learning and Deep Learning algorithms have been introduced, claiming to offer better performance than traditional statistical approaches when forecasting time series. Studies seeking evidence to support the usage of ML/DL over statistical approaches have been limited to comparing the forecasting performance of univariate, linear time series data. This research compares the performance of traditional statistical-based and ML/DL methods for forecasting multivariate and nonlinear time series.


A Hybrid Ensemble Of Learning Models, Bivin Sadler, Dhruba Dey, Duy Nguyen, Tavin Weeda 2023 Southern Methodist University

A Hybrid Ensemble Of Learning Models, Bivin Sadler, Dhruba Dey, Duy Nguyen, Tavin Weeda

SMU Data Science Review

Statistical models in time series forecasting have long been challenged to be superseded by the advent of deep learning models. This research proposes a new hybrid ensemble of forecasting models that combines the strengths of several strong candidates from these two model types. The proposed ensemble aims to improve the accuracy of forecasts and reduce computational complexity by leveraging the strengths of each candidate model.


Forecasting Covid-19 With Temporal Hierarchies And Ensemble Methods, Li Shandross 2023 University of Massachusetts Amherst

Forecasting Covid-19 With Temporal Hierarchies And Ensemble Methods, Li Shandross

Masters Theses

Infectious disease forecasting efforts underwent rapid growth during the COVID-19 pandemic, providing guidance for pandemic response and about potential future trends. Yet despite their importance, short-term forecasting models often struggled to produce accurate real-time predictions of this complex and rapidly changing system. This gap in accuracy persisted into the pandemic and warrants the exploration and testing of new methods to glean fresh insights.

In this work, we examined the application of the temporal hierarchical forecasting (THieF) methodology to probabilistic forecasts of COVID-19 incident hospital admissions in the United States. THieF is an innovative forecasting technique that aggregates time-series data into …


A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines., Abdulgani Kahraman 2023 University of Louisville

A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines., Abdulgani Kahraman

Electronic Theses and Dissertations

This thesis focuses on methods for improving energy consumption prediction performance in complex industrial machines. Working with real-world industrial machines brings several challenges, including data access, algorithmic bias, data privacy, and the interpretation of machine learning algorithms. To effectively manage energy consumption in the industrial sector, it is essential to develop a framework that enhances prediction performance, reduces energy costs, and mitigates air pollution in heavy industrial machine operations. This study aims to assist managers in making informed decisions and driving the transition towards green manufacturing. The energy consumption of industrial machinery is substantial, and the recent increase in CO2 …


Payments Data In Gambling Research, Kasra Ghaharian, Mana Azizsoltani 2023 University of Nevada, Las Vegas

Payments Data In Gambling Research, Kasra Ghaharian, Mana Azizsoltani

International Conference on Gambling & Risk Taking

A considerable body of gambling-related research has leveraged gamblers' behavioral tracking data to address a broad set of research questions. These data have typically comprised of gamblers' betting-related behaviors including, for example, the frequency and volume of betting. The analysis of gamblers' payment-related behavioral data is far less common, but provides a fruitful avenue gambling-related research.

In this presentation we discuss a selection of potential research opportunities that payments transaction data presents. We supplement this discussion with specific analyses that have been performed by our research group. We also discuss knowledge gaps and areas for future research.


Utilizing New Technologies To Measure Therapy Effectiveness For Mental And Physical Health, Jonathan Ossie 2023 University of San Diego

Utilizing New Technologies To Measure Therapy Effectiveness For Mental And Physical Health, Jonathan Ossie

Dissertations

Mental health is quickly becoming a major policy concern, with recent data reporting increasing and disproportionately worse mental health outcomes, including anxiety, depression, increased substance abuse, and elevated suicidal ideation. One specific population that is especially high risk for these issues is the military community because military conflict, deployment stressors, and combat exposure contribute to the risk of mental health problems.

Although several pharmacological approaches have been employed to combat this epidemic, their efficacy is mixed at best, which has led to novel nonpharmacological approaches. One such approach is Operation Surf, a nonprofit that provides nature-based programs advocating the restorative …


A Novel Family Of Chain Binomial Models To Investigate Correlated Vaccination And Infection Rates In Sveirs Epidemic Dynamics, Divine Wanduku 2023 Virginia Commonwealth University

A Novel Family Of Chain Binomial Models To Investigate Correlated Vaccination And Infection Rates In Sveirs Epidemic Dynamics, Divine Wanduku

Biology and Medicine Through Mathematics Conference

No abstract provided.


Drug Ideologies Of The United States, Macy Montgomery 2023 Liberty University

Drug Ideologies Of The United States, Macy Montgomery

Helm's School of Government Conference - American Revival: Citizenship & Virtue

The United States has been increasingly creating lenient drug policies. Seventeen states and Washington, the District of Columbia, legalized marijuana, and Oregon decriminalized certain drugs, including methamphetamine, heroin, and cocaine. The medical community has proven that drugs, including marijuana, have myriad adverse health side effects. This leads to two questions: Why does the United States government continue to create lenient drug policies, and what reasons do citizens give for legalizing drugs when the medical community has proven them harmful? The paper hypothesizes that the disadvantages of drug legalization outweigh its benefits because of the numerous harms it causes, such as …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin 2023 Clemson University

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry 2023 Old Dominion University

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry

Modeling, Simulation and Visualization Student Capstone Conference

This work explores collecting performance metrics and leveraging the output for prediction on a memory-intensive parallel image classification algorithm - Inception v3 (or "Inception3"). Experimental results were collected by nvidia-smi on a computational node DGX-1, equipped with eight Tesla V100 Graphic Processing Units (GPUs). Time series analysis was performed on the GPU utilization data taken, for multiple runs, of Inception3’s image classification algorithm (see Figure 1). The time series model applied was Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX).


The Effectiveness Of Visualization Techniques For Supporting Decision-Making, Cansu Yalim, Holly A. H. Handley 2023 Old Dominion University

The Effectiveness Of Visualization Techniques For Supporting Decision-Making, Cansu Yalim, Holly A. H. Handley

Modeling, Simulation and Visualization Student Capstone Conference

Although visualization is beneficial for evaluating and communicating data, the efficiency of various visualization approaches for different data types is not always evident. This research aims to address this issue by investigating the usefulness of several visualization techniques for various data kinds, including continuous, categorical, and time-series data. The qualitative appraisal of each technique's strengths, weaknesses, and interpretation of the dataset is investigated. The research questions include: which visualization approaches perform best for different data types, and what factors impact their usefulness? The absence of clear directions for both researchers and practitioners on how to identify the most effective visualization …


Extending The M3-Competition: Category And Interval-Specific Time Series Forecasting, Will Sherman, Kati Schuerger, Randy Kim, Bivin Sadler 2023 Southern Methodist University

Extending The M3-Competition: Category And Interval-Specific Time Series Forecasting, Will Sherman, Kati Schuerger, Randy Kim, Bivin Sadler

SMU Data Science Review

The M3-Competition found that simple models outperform more complex ones for time series forecasting. As part of these competitions, several claims were made that statistical models exceeded machine learning (ML) techniques, such as recurrent neural networks (RNN), in prediction performance. These findings may over-generalize the capabilities of statistical models since the analysis measured the total forecasting accuracy across a wide range of industries and fields and with different interval lengths. This investigation aimed to assess how statistical and ML methods compared when individuating series by category and time interval. Utilizing the M3 data and building individual models using Facebook© Prophet …


Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population, Emily Bonus 2023 Liberty University

Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population, Emily Bonus

Senior Honors Theses

In 2020, the virus SARS-CoV-2 gained attention as it spread around the world. Its antibodies are poorly understood, and little research focuses on those with few COVID-19 complications yet large numbers of close contacts: university students. This longitudinal study recorded SARS-CoV-2 antibody presence in 107 undergraduate Liberty University students twice during early 2021. After extensive data cleaning and the application of various statistical tests and ANOVAs, the data seems to show that in the case of COVID-19 infections, SARS-CoV-2 IgM antibodies are immediately produced, and then IgG antibodies follow later. However, the COVID-19 vaccine causes the production of both IgM …


Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data, Louis Vazquez 2023 Southern Methodist University

Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data, Louis Vazquez

Statistical Science Theses and Dissertations

Influence diagnostics in regression analysis allow analysts to identify observations that have a strong influence on model fitted probabilities and parameter estimates. The most common influence diagnostics, such as Cook’s Distance for linear regression, are based on a deletion approach where the results of a model with and without observations of interest are compared. Here, deletion-based influence diagnostics are proposed for generalized estimating equations (GEE) for correlated, or clustered, nominal multinomial responses. The proposed influence diagnostics focus on GEEs with the baseline-category logit link function and a local odds ratio parameterization of the association structure. Formulas for both observation- and …


Fraud Pattern Detection For Nft Markets, Andrew Leppla, Jorge Olmos, Jaideep Lamba 2023 Southern Methodist University

Fraud Pattern Detection For Nft Markets, Andrew Leppla, Jorge Olmos, Jaideep Lamba

SMU Data Science Review

Non-Fungible Tokens (NFTs) enable ownership and transfer of digital assets using blockchain technology. As a relatively new financial asset class, NFTs lack robust oversight and regulations. These conditions create an environment that is susceptible to fraudulent activity and market manipulation schemes. This study examines the buyer-seller network transactional data from some of the most popular NFT marketplaces (e.g., AtomicHub, OpenSea) to identify and predict fraudulent activity. To accomplish this goal multiple features such as price, volume, and network metrics were extracted from NFT transactional data. These were fed into a Multiple-Scale Convolutional Neural Network that predicts suspected fraudulent activity based …


Models For Predicting Maximum Potential Intensity Of Tropical Cyclones, Iftekhar Chowdhury, Gemechis Djira 2023 South Dakota State University

Models For Predicting Maximum Potential Intensity Of Tropical Cyclones, Iftekhar Chowdhury, Gemechis Djira

SDSU Data Science Symposium

Tropical cyclones (TCs) are considered as extreme weather events, which has a low-pressure center, namely an eye, strong winds, and a spiral arrangement of thunderstorms that produces heavy rain, storm surges, and can cause severe destruction in coastal areas worldwide. Therefore, reliable forecasts of the maximum potential intensity (MPI) of TCs are critical to estimate the damages to properties, lives, and risk assessment. In this study, we explore and propose various regression models, to predict the potential intensity of TCs in the North Atlantic at 12, 24, 36, 48, 60, and 72- hour forecasting lead time. In addition, a popular …


Copula-Based Models For Bivariate And Multivariate Zero-Inflated Count Time Series Data, Dimuthu Fernando, Norou Diawara 2023 Old Dominion University

Copula-Based Models For Bivariate And Multivariate Zero-Inflated Count Time Series Data, Dimuthu Fernando, Norou Diawara

College of Sciences Posters

Count time series data have multiple applications. The applications can be found in areas of finance, climate, public health and crime data analyses. In some scenarios, count time series come as multivariate vectors that exhibit not only serial dependence within each time series but also with cross correlation among the series. When considering these observed counts, analysis presents crucial challenges when a value, say zero, occurs more often than usual. There is presence of zero-inflation in the data.

In this presentation, we mainly focus on modeling bivariate zero-inflated count time series model based on a joint distribution of the two …


The Impact Of Subjective Risk Analysis On Real Estate Prices In The Nisqually Region Following The 2001 Nisqually Earthquake, Ryan Espedal 2023 Central Washington University

The Impact Of Subjective Risk Analysis On Real Estate Prices In The Nisqually Region Following The 2001 Nisqually Earthquake, Ryan Espedal

All Master's Theses

Earthquakes are an environmental hazard that pose great risks to communities almost every day. With earthquakes, the main cause of concern is physical destruction of property, however, there are also psychological effects that are researched and discussed much less. In 2001, the Nisqually area of western Washington experienced a substantial earthquake that produced minimal physical damage but caused a significant decrease in real estate prices. Studying single-family homes from 1986-2012, this research utilizes hedonic property models to measure the change in consumer’s subjective risk calculations with reference to real estate purchases after the Nisqually earthquake, measure the relationship between earthquake …


Digital Commons powered by bepress