Open Access. Powered by Scholars. Published by Universities.®

Statistical Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

1,650 Full-Text Articles 2,118 Authors 1,424,899 Downloads 61 Institutions

All Articles in Statistical Theory

Faceted Search

1,650 full-text articles. Page 1 of 44.

Testing For Dice Control Based On Observations Of The Length Of The Shooter's Hand, Stewart N. Ethier, Hokwon Cho 2023 University of Utah

Testing For Dice Control Based On Observations Of The Length Of The Shooter's Hand, Stewart N. Ethier, Hokwon Cho

International Conference on Gambling & Risk Taking

uploaded


Uconn Baseball Batting Order Optimization, Gavin Rublewski, Gavin Rublewski 2023 University of Connecticut

Uconn Baseball Batting Order Optimization, Gavin Rublewski, Gavin Rublewski

Honors Scholar Theses

Challenging conventional wisdom is at the very core of baseball analytics. Using data and statistical analysis, the sets of rules by which coaches make decisions can be justified, or possibly refuted. One of those sets of rules relates to the construction of a batting order. Through data collection, data adjustment, the construction of a baseball simulator, and the use of a Monte Carlo Simulation, I have assessed thousands of possible batting orders to determine the roster-specific strategies that lead to optimal run production for the 2023 UConn baseball team. This paper details a repeatable process in which basic player statistics …


Two Sample Statistical Test For Location Parameters, Narinder Kumar, Arun Kumar 2023 Panjab University, Chandigarh

Two Sample Statistical Test For Location Parameters, Narinder Kumar, Arun Kumar

Journal of Modern Applied Statistical Methods

A class of distribution-free tests for the homogeneity of location parameters is proposed and compared with different competitors in terms of Pitman asymptotic relative efficiency. A numerical example is provided and a simulation study is made to check the performance of the tests.


Context-Aware Collaborative Neuro-Symbolic Inference In Internet Of Battlefield Things, Tarek Abdelzaher, Nathaniel D. Bastian, Susmit Jha, Lance Kaplan, Mani Srivastava, Venugopal Veeravalli 2022 Army Cyber Institute, U.S. Military Academy

Context-Aware Collaborative Neuro-Symbolic Inference In Internet Of Battlefield Things, Tarek Abdelzaher, Nathaniel D. Bastian, Susmit Jha, Lance Kaplan, Mani Srivastava, Venugopal Veeravalli

ACI Journal Articles

IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features …


Mle And Eap Methods For Estimating Ability Scores For Data Of Varying Sample Size And Item Length, Sahar Taji 2022 University of Arkansas, Fayetteville

Mle And Eap Methods For Estimating Ability Scores For Data Of Varying Sample Size And Item Length, Sahar Taji

Graduate Theses and Dissertations

In this research, the performance of two popular estimators, Maximum Likelihood Estimator(MLE) and Bayesian Expected a Posteriori (EAP) is studied and compared in estimating the latent ability score in an Item Response Theory (IRT) model. The 2-Parameter Logistic (2PL) IRT model which is characterized by difficulty and discrimination item parameters is used to estimate the latent ability scores. Several datasets are generated for variety of sample size and item length values. The Monte-Carlo simulation is used to analyze the performance of the estimators. Results show that MLE produces reliable results with low root mean square error (RMSE) across all datasets. …


Bayesian Methods For Graphical Models With Neighborhood Selection., Sagnik Bhadury 2022 University of Louisville

Bayesian Methods For Graphical Models With Neighborhood Selection., Sagnik Bhadury

Electronic Theses and Dissertations

Graphical models determine associations between variables through the notion of conditional independence. Gaussian graphical models are a widely used class of such models, where the relationships are formalized by non-null entries of the precision matrix. However, in high-dimensional cases, covariance estimates are typically unstable. Moreover, it is natural to expect only a few significant associations to be present in many realistic applications. This necessitates the injection of sparsity techniques into the estimation method. Classical frequentist methods, like GLASSO, use penalization techniques for this purpose. Fully Bayesian methods, on the contrary, are slow because they require iteratively sampling over a quadratic …


Off-Policy Evaluation For Action-Dependent Non-Stationary Environments, Yash Chandak, Shiv Shankar, Nathaniel D. Bastian, Bruno Castro da Silva, Emma Brunskill, Philip Thomas 2022 Army Cyber Institute, U.S. Military Academy

Off-Policy Evaluation For Action-Dependent Non-Stationary Environments, Yash Chandak, Shiv Shankar, Nathaniel D. Bastian, Bruno Castro Da Silva, Emma Brunskill, Philip Thomas

ACI Journal Articles

Methods for sequential decision-making are often built upon a foundational assumption that the underlying decision process is stationary. This limits the application of such methods because real-world problems are often subject to changes due to external factors (passive non-stationarity), changes induced by interactions with the system itself (active non-stationarity), or both (hybrid non-stationarity). In this work, we take the first steps towards the fundamental challenge of on-policy and off-policy evaluation amidst structured changes due to active, passive, or hybrid non-stationarity. Towards this goal, we make a higher-order stationarity assumption such that non-stationarity results in changes over time, but the way …


Statistical Roles Of The G-Expectation Framework In Model Uncertainty: The Semi-G-Structure As A Stepping Stone, Yifan Li 2022 The University of Western Ontario

Statistical Roles Of The G-Expectation Framework In Model Uncertainty: The Semi-G-Structure As A Stepping Stone, Yifan Li

Electronic Thesis and Dissertation Repository

The G-expectation framework is a generalization of the classical probability system based on the sublinear expectation to deal with phenomena that cannot be described by a single probabilistic model. These phenomena are closely related to the long-existing concern about model uncertainty in statistics. However, the distributions and independence in the G-framework are quite different from the classical setup. These distinctions bring difficulty when applying the idea of this framework to general statistical practice. Therefore, a fundamental and unavoidable problem is how to better understand G-version concepts from a statistical perspective.

To explore this problem, this thesis establishes a new substructure …


Bayesian Estimation Of The Intensity Function Of A Non-Homogeneous Poisson Process, James Jensen 2022 Jacksonville State University

Bayesian Estimation Of The Intensity Function Of A Non-Homogeneous Poisson Process, James Jensen

Theses

In this paper we explore Bayesian inference and its application to the problem of estimating the intensity function of a non-homogeneous Poisson process. These processes model the behavior of phenomena in which one or more events, known as arrivals, occur independently of one another over a certain period of time. We are concerned with the number of events occurring during particular time intervals across several realizations of the process. We show that given sufficient data, we are able to construct a piecewise-constant function which accurately estimates the mean rates on particular intervals. Further, we show that as we reduce these …


The Q-Analogue Of The Extended Generalized Gamma Distribution, Wenhao Chen 2022 Western University

The Q-Analogue Of The Extended Generalized Gamma Distribution, Wenhao Chen

Undergraduate Student Research Internships Conference

This project introduces a flexible univariate probability model referred to as the q-analogue of the Extended Generalized Gamma (or q-EGG) distribution, which encompasses the majority of the most frequently used continuous distributions, including the gamma, Weibull, logistic, type-1 and type-2 beta, Gaussian, Cauchy, Student-t and F. Closed form representations of its moments and cumulative distribution function are provided. Additionally, computational techniques are proposed for determining estimates of its parameters. Both the method of moments and the maximum likelihood approach are utilized. The effect of each parameter is also graphically illustrated. Certain data sets are modeled with q-EGG distributions; goodness of …


To Logit Or Not To Logit Data In The Unit Interval: A Simulation Study, Kayode Idris Hamzat 2022 University of Windsor

To Logit Or Not To Logit Data In The Unit Interval: A Simulation Study, Kayode Idris Hamzat

Major Papers

In this paper, we recommend a mechanism for determining whether to logit or not to logit data in the unit interval which is based on quantile estimation of data between 0 and 1. By using a simulated dataset generated from a Beta regression model, the estimated quantile for this model perform better than those based on the linear quantile regression with logit transformation.

Further, we investigate the performance of the quantile regression estimators based on the LQR and we conclude that it is better than those based on the Beta regression when the distribution is contaminated with 10% uniform numbers …


New Developments On The Estimability And The Estimation Of Phase-Type Actuarial Models, Cong Nie 2022 The University of Western Ontario

New Developments On The Estimability And The Estimation Of Phase-Type Actuarial Models, Cong Nie

Electronic Thesis and Dissertation Repository

This thesis studies the estimability and the estimation methods for two models based on Markov processes: the phase-type aging model (PTAM), which models the human aging process, and the discrete multivariate phase-type model (DMPTM), which can be used to model multivariate insurance claim processes.

The principal contributions of this thesis can be categorized into two areas. First, an objective measure of estimability is proposed to quantify estimability in the context of statistical models. Existing methods for assessing estimability require the subjective specification of thresholds, which potentially limits their usefulness. Unlike these methods, the proposed measure of estimability is objective. In …


Aberrant Responding With Underlying Dominance And Unfolding Response Processes: Examining Model Fit And Performance Of Person-Fit Statistics, Jennifer A. Reimers 2022 University of Arkansas, Fayetteville

Aberrant Responding With Underlying Dominance And Unfolding Response Processes: Examining Model Fit And Performance Of Person-Fit Statistics, Jennifer A. Reimers

Graduate Theses and Dissertations

Researchers have recognized that respondents may not answer items in a way that accurately reflects their attitude or trait level being measured. The resulting response data that deviates from what would be expected has been shown to have significant effects on the psychometric properties of a scale and analytical results. However, many studies that have investigated the detection of aberrant data and its effects have done so using dominance item response theory (IRT) models. It is unknown whether the impacts of aberrant data and the methodology used to identify aberrant responding when using dominance IRT models apply similarly when scales …


How Blockchain Solutions Enable Better Decision Making Through Blockchain Analytics, Sammy Ter Haar 2022 University of Arkansas, Fayetteville

How Blockchain Solutions Enable Better Decision Making Through Blockchain Analytics, Sammy Ter Haar

Information Systems Undergraduate Honors Theses

Since the founding of computers, data scientists have been able to engineer devices that increase individuals’ opportunities to communicate with each other. In the 1990s, the internet took over with many people not understanding its utility. Flash forward 30 years, and we cannot live without our connection to the internet. The internet of information is what we called early adopters with individuals posting blogs for others to read, this was known as Web 1.0. As we progress, platforms became social allowing individuals in different areas to communicate and engage with each other, this was known as Web 2.0. As Dr. …


Advancements In Gaussian Process Learning For Uncertainty Quantification, John C. Nicholson 2022 Clemson University

Advancements In Gaussian Process Learning For Uncertainty Quantification, John C. Nicholson

All Dissertations

Gaussian processes are among the most useful tools in modeling continuous processes in machine learning and statistics. The research presented provides advancements in uncertainty quantification using Gaussian processes from two distinct perspectives. The first provides a more fundamental means of constructing Gaussian processes which take on arbitrary linear operator constraints in much more general framework than its predecessors, and the other from the perspective of calibration of state-aware parameters in computer models. If the value of a process is known at a finite collection of points, one may use Gaussian processes to construct a surface which interpolates these values to …


On Misuses Of The Kolmogorov–Smirnov Test For One-Sample Goodness-Of-Fit, Anthony Zeimbekakis 2022 University of Connecticut

On Misuses Of The Kolmogorov–Smirnov Test For One-Sample Goodness-Of-Fit, Anthony Zeimbekakis

Honors Scholar Theses

The Kolmogorov–Smirnov (KS) test is one of the most popular goodness-of-fit tests for comparing a sample with a hypothesized parametric distribution. Nevertheless, it has often been misused. The standard one-sample KS test applies to independent, continuous data with a hypothesized distribution that is completely specified. It is not uncommon, however, to see in the literature that it was applied to dependent, discrete, or rounded data, with hypothesized distributions containing estimated parameters. For example, it has been "discovered" multiple times that the test is too conservative when the parameters are estimated. We demonstrate misuses of the one-sample KS test in three …


Parametric And Reliability Estimation Of The Kumaraswamy Generalized Distribution Based On Record Values, Mohd. Arshad, Qazi J. Azhad 2022 Indian Institute of Technology Indore, Madhya Pradesh, India

Parametric And Reliability Estimation Of The Kumaraswamy Generalized Distribution Based On Record Values, Mohd. Arshad, Qazi J. Azhad

Journal of Modern Applied Statistical Methods

A general family of distributions, namely Kumaraswamy generalized family of (Kw-G) distribution, is considered for estimation of the unknown parameters and reliability function based on record data from Kw-G distribution. The maximum likelihood estimators (MLEs) are derived for unknown parameters and reliability function, along with its confidence intervals. A Bayesian study is carried out under symmetric and asymmetric loss functions in order to find the Bayes estimators for unknown parameters and reliability function. Future record values are predicted using Bayesian approach and non Bayesian approach, based on numerical examples and a monte carlo simulation.


Does The Type Of Records Affect The Estimates Of The Parameters?, Ayush Tripathi, Umesh Singh, Sanjay Kumar Singh 2022 Banaras Hindu University

Does The Type Of Records Affect The Estimates Of The Parameters?, Ayush Tripathi, Umesh Singh, Sanjay Kumar Singh

Journal of Modern Applied Statistical Methods

The maximum likelihood estimation of the unknown parameters of inverse Rayleigh and exponential distributions are discussed based on lower and upper records. The aim is to study the effect of the type of records on the behavior of the corresponding estimators. Mean squared errors are calculated through simulation to study the behavior of the estimators. The results shall be of interest to those situations where the data can be obtained in the form of either of the two types of records and the experimenter must decide between these two for estimation of the unknown parameters of the distribution.


Design Of Sksp-R Plan For Popular Statistical Distributions, Jaffer Hussain, S. Balamurali, Muhammad Aslam 2022 GC University, Lahore, Pakistan

Design Of Sksp-R Plan For Popular Statistical Distributions, Jaffer Hussain, S. Balamurali, Muhammad Aslam

Journal of Modern Applied Statistical Methods

The design of a Skip-lot sampling plan of type SkSP-R is presented for time truncated life test for the Weibull, Exponentiated Weibull, and Birnbaum-Saunders lifetime distributions. The plan parameters of the SkSP-R plan under these three distributions are determined through a nonlinear optimization problem. Tables are also constructed for each distribution. The advantages of the proposed plan over the existing sampling schemes are discussed. Application of the proposed plan is explained with the help of an example. The Birnbaum-Saunders distribution is economically superior to other two distributions in terms of minimum average sample number.


Parameter Estimation Based On Double Ranked Set Samples With Applications To Weibull Distribution, Mohamed Abd Elhamed Sabry, Hiba Zeyada Muhammed, Mostafa Shaaban, Abd El Hady Nabih 2022 Cairo University, Cairo, Egypt

Parameter Estimation Based On Double Ranked Set Samples With Applications To Weibull Distribution, Mohamed Abd Elhamed Sabry, Hiba Zeyada Muhammed, Mostafa Shaaban, Abd El Hady Nabih

Journal of Modern Applied Statistical Methods

In this paper, the likelihood function for parameter estimation based on double ranked set sampling (DRSS) schemes is introduced. The proposed likelihood function is used for the estimation of the Weibull distribution parameters. The maximum likelihood estimators (MLEs) are investigated and compared to the corresponding ones based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. A Monte Carlo simulation is conducted and the absolute relative biases, mean square errors, and efficiencies are compared for the different schemes. It is found that, the MLEs based on DRSS is more efficient than MLE using SRS and RSS for estimating …


Digital Commons powered by bepress