A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students,
2023
The University of Texas at Tyler
A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students, Christopher L. Thomas, Staci Zolkoski
Journal of Research Initiatives
Prior research has noted differences in motivational, academic, and well-being factors between first-generation and continuing-education students. However, past investigations have primarily overlooked the interactive influence of protective and risk factors when comparing the characteristics of first-generation and continuing-education students. Thus, the current study adopted a multivariate approach to gain a more nuanced understanding of the influence of generational status on students' self-regulated learning capabilities, academic anxiety, sense of belonging, academic barriers, mental health concerns, and satisfaction with life. University students (N = 432, 67.46% Caucasian, 87.55% female, Age = 28.10 ± 9.46) completed the Cognitive Test Anxiety Scale-2nd …
Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies,
2023
The University of Western Ontario
Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies, Alexandru M. Draghici
Electronic Thesis and Dissertation Repository
Mark-recapture (MR) models typically assume that individuals under study have independent survival and recapture outcomes. One such model of interest is known as the Cormack-Jolly-Seber (CJS) model. In this dissertation, we conduct three major research projects focused on studying the impact of violating the independence assumption in MR models along with presenting extensions which relax the independence assumption. In the first project, we conduct a simulation study to address the impact of failing to account for pair-bonded animals having correlated recapture and survival fates on the CJS model. We examined the impact of correlation on the likelihood ratio test (LRT), …
Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research,
2023
nQube Data Science Inc.
Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research, Courtney Bonner, Anastasia (Stasi) D. Baran, Jason D. Fiege, Saman Muthukumarana
International Conference on Gambling & Risk Taking
Abstract:
A common difficulty when researching gambling topics is the availability of high-quality data sets for development and testing. Due to the high level of secrecy within the gambling industry, if data is obtained for research purposes it is often prohibitively obfuscated, incomplete, or aggregated. Although these data have allowed for advancement in academic work, it leaves both the researchers and readers left wondering about what would be possible if more detailed data sets were available. To mitigate the paucity of data available to researchers, we present a Markov chain-based statistical process for producing artificial event data for a simulated …
Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems,
2023
Army Cyber Institute, U.S. Military Academy
Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems, Marc Chale, Bruce Cox, Jeffery Weir, Nathaniel D. Bastian
ACI Journal Articles
Deep learning has enabled network intrusion detection rates as high as 99.9% for malicious network packets without requiring feature engineering. Adversarial machine learning methods have been used to evade classifiers in the computer vision domain; however, existing methods do not translate well into the constrained cyber domain as they tend to produce non-functional network packets. This research views the payload of network packets as code with many functional units. A meta-heuristic based generative model is developed to maximize classification loss of packet payloads with respect to a surrogate model by repeatedly substituting units of code with functionally equivalent counterparts. The …
Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time,
2023
Eastern Virginia Medical School
Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr
Biology and Medicine Through Mathematics Conference
No abstract provided.
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning,
2023
Southern Methodist University
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning, Mary Lena Bleile
Statistical Science Theses and Dissertations
Tumor xenograft experiments are a popular tool of cancer biology research. In a typical such experiment, one implants a set of animals with an aliquot of the human tumor of interest, applies various treatments of interest, and observes the subsequent response. Efficient analysis of the data from these experiments is therefore of utmost importance. This dissertation proposes three methods for optimizing cancer treatment and data analysis in the tumor xenograft context. The first of these is applicable to tumor xenograft experiments in general, and the second two seek to optimize the combination of radiotherapy with immunotherapy in the tumor xenograft …
Movie Recommender System Using Matrix Factorization,
2023
University of Central Florida
Movie Recommender System Using Matrix Factorization, Roland Fiagbe
Data Science and Data Mining
Recommendation systems are a popular and beneficial field that can help people make informed decisions automatically. This technique assists users in selecting relevant information from an overwhelming amount of available data. When it comes to movie recommendations, two common methods are collaborative filtering, which compares similarities between users, and content-based filtering, which takes a user’s specific preferences into account. However, our study focuses on the collaborative filtering approach, specifically matrix factorization. Various similarity metrics are used to identify user similarities for recommendation purposes. Our project aims to predict movie ratings for unwatched movies using the MovieLens rating dataset. We developed …
Brief Review: Low Frequency Event Charts (G-Charts) In Healthcare,
2023
Rowan University
Brief Review: Low Frequency Event Charts (G-Charts) In Healthcare, James Espinosa, David Ho, Alan Lucerna, Henry Schuitema
Stratford Campus Research Day
The ability to determine if a change in a system is actually an improvement—or worsening in function—is one of the essential desiderata of quality improvement efforts. There are many ways to look at the issue. A special problem occurs when the event being studied is low frequency by nature. By way of example, patient falls in a given hospital or division of a hospital may occur in a way that is low frequency—yet each event is important. Process engineering has developed an approach to low frequency events. Part of this approach may involve specialized charts that look at the “time-between-events”—as …
Distance Correlation Based Feature Selection In Random Forest,
2023
California State University - San Bernardino
Distance Correlation Based Feature Selection In Random Forest, Jose Munoz-Lopez
Electronic Theses, Projects, and Dissertations
The Pearson correlation coefficient is a commonly used measure of correlation, but it has limitations as it only measures the linear relationship between two numerical variables. In 2007, Szekely et al. introduced the distance correlation, which measures all types of dependencies between random vectors X and Y in arbitrary dimensions, not just the linear ones. In this thesis, we propose a filter method that utilizes distance correlation as a criterion for feature selection in Random Forest regression. We conduct extensive simulation studies to evaluate its performance compared to existing methods under various data settings, in terms of the prediction mean …
A Monte Carlo Analysis Of Nonprobability Sampling & Post Hoc Corrections,
2023
Western Kentucky University
A Monte Carlo Analysis Of Nonprobability Sampling & Post Hoc Corrections, Julia Hong
Masters Theses & Specialist Projects
Nonprobability samples are often used in place of probability samples because the former are less trouble and less expensive. Unfortunately, it is difficult to determine how well a sample represents population parameters when using nonprobability samples. Researchers attempt to mitigate the disadvantages of nonprobability sampling by performing post hoc corrections, but this adjustment may not successfully undo the effects of nonprobability sampling. To examine these effects, a Monte Carlo simulation was conducted to create a pseudo-population from which samples were drawn. Forty-one conditions were replicated 10,000 times each, with each sample consisting of 100 observations. A post-stratification adjustment was made …
Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists,
2023
Kennesaw State University
Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists, Graham Nash
Symposium of Student Scholars
Employee attrition is a relevant issue that every business employer must consider when gauging the effectiveness of their employees. Whether or not an employee chooses to leave their job can come from a multitude of factors. As a result, employers need to develop methods in which they can measure attrition by calculating the several qualities of their employees. Factors like their age, years with the company, which department they work in, their level of education, their job role, and even their marital status are all considered by employers to assist in predicting employee attrition. This project will be analyzing a …
Length Bias Estimation Of Small Businesses Lifetime,
2023
University of Richmond
Length Bias Estimation Of Small Businesses Lifetime, Simeng Li
Honors Theses
Small businesses, particularly restaurants, play a crucial role in the economy by generating employment opportunities, boosting tourism, and contributing to the local economy. However, accurately estimating their lifetimes can be challenging due to the presence of length bias, which occurs when the likelihood of sampling any particular restaurant's closure is influenced by its duration in operation. To address the issue, this study conducts goodness-of-fit tests on exponential/gamma family distributions and employs the Kaplan-Meier method to more accurately estimate the average lifetime of restaurants in Carytown. By providing insights into the challenges of estimating the lifetimes of small businesses, this study …
That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling,
2023
University of South Carolina - Columbia
That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling, Mary Bernstein
Senior Theses
A rise in online religious communities and the growth of so-called ‘Old World’ religions are reflected in the internet’s subcultures of Neopaganism, a growing religious movement that has been documented in America since the 1960s. The religions under this umbrella movement vary drastically and include belief systems such as Wicca, Druidry, and deity worship. Belief systems under this movement lack the traditional hierarchy found in structured religion and lack a singular sacred text. As such, believers usually find and support one another not through a physical sacred place of meeting, but through an online community that acts as sacred space. …
Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population,
2023
Liberty University
Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population, Emily Bonus
Senior Honors Theses
In 2020, the virus SARS-CoV-2 gained attention as it spread around the world. Its antibodies are poorly understood, and little research focuses on those with few COVID-19 complications yet large numbers of close contacts: university students. This longitudinal study recorded SARS-CoV-2 antibody presence in 107 undergraduate Liberty University students twice during early 2021. After extensive data cleaning and the application of various statistical tests and ANOVAs, the data seems to show that in the case of COVID-19 infections, SARS-CoV-2 IgM antibodies are immediately produced, and then IgG antibodies follow later. However, the COVID-19 vaccine causes the production of both IgM …
Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data,
2023
Southern Methodist University
Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data, Louis Vazquez
Statistical Science Theses and Dissertations
Influence diagnostics in regression analysis allow analysts to identify observations that have a strong influence on model fitted probabilities and parameter estimates. The most common influence diagnostics, such as Cook’s Distance for linear regression, are based on a deletion approach where the results of a model with and without observations of interest are compared. Here, deletion-based influence diagnostics are proposed for generalized estimating equations (GEE) for correlated, or clustered, nominal multinomial responses. The proposed influence diagnostics focus on GEEs with the baseline-category logit link function and a local odds ratio parameterization of the association structure. Formulas for both observation- and …
Finite Mixture Modeling For Hierarchically Structured Data With Application To Keystroke Dynamics,
2023
South Dakota State University
Finite Mixture Modeling For Hierarchically Structured Data With Application To Keystroke Dynamics, Andrew Simpson, Semhar Michael
SDSU Data Science Symposium
Keystroke dynamics has been used to both authenticate users of computer systems and detect unauthorized users who attempt to access the system. Monitoring keystroke dynamics adds another level to computer security as passwords are often compromised. Keystrokes can also be continuously monitored long after a password has been entered and the user is accessing the system for added security. Many of the current methods that have been proposed are supervised methods in that they assume that the true user of each keystroke is known apriori. This is not always true for example with businesses and government agencies which have internal …
Forecasting Remission Time Of A Treatment Method For Leukemia As An Application To Statistical Inference Approach,
2023
Al-Azhar University - Egypt
Forecasting Remission Time Of A Treatment Method For Leukemia As An Application To Statistical Inference Approach, Mahmoud Mansour, Rashad El-Sagheer, Ahmed Galal Attia, Beha S. El-Desouky Prof.
Basic Science Engineering
In this paper, Weibull-Linear Exponential distribution (WLED) has been investigated whether being it is a well-fit distribution to a clinical real data. These data represent the duration of remission achieved by a certain drug used in the treatment of leukemia for a group of patients. The statistical inference approach is used to estimate the parameters of the WLED through the set of the fitted data. The estimated parameters are utilized to evaluate the survival and hazard functions and hence assessing the treatment method through forecasting the duration of remission times of patients. A two-sample prediction approach has been applied to …
Modeling And Fitting Two-Way Tables Containing Outliers,
2023
Rochester Institute of Technology
Modeling And Fitting Two-Way Tables Containing Outliers, David L. Farnsworth
Articles
A model is proposed for two-way tables of measurement data containing outliers. The two independent variables are categorical and error free. Neither missing values nor replication are present. The model consists of the sum of a customary additive part that can be fit using least squares and a part that is composed of outliers. Recommendations are made for methods for identifying cells containing outliers and for fitting the model. A graph of the observations is used to determine the outliers’ locations. For all cells containing an outlier, replacement values are determined simultaneously using a classical missing-data tool. The result is …
Unlocking Potential: The School-To-Prison Pipeline For Students With Disabilities,
2023
The Graduate Center, City University of New York
Unlocking Potential: The School-To-Prison Pipeline For Students With Disabilities, Navena F. Chaitoo
Dissertations, Theses, and Capstone Projects
This research uses quasi-experimental, matched sampling to examine the school-to-prison pipeline for students with disabilities using data from the National Longitudinal Study of Adolescent to Adult Health. This study presents novel insights into an at-risk group that has faced disproportionate rates of school discipline and incarceration. The study finds school suspension to be associated with future involvement in the criminal legal system and lower educational attainment. Disability was not found to mediate the relationship between suspension and future involvement in the criminal legal system or the relationship between suspension and academic outcomes. However, disability was found to be a statistically …
Biasing Estimator To Mitigate Multicollinearity In Linear Regression Model,
2023
Department of Mathematics and Statistics, Federal University Wukari, Wukari, Nigeria
Biasing Estimator To Mitigate Multicollinearity In Linear Regression Model, Abdulrasheed Bello Badawaire, Issam Dawoud, Adewale Folaranmi Lukman, Victoria Laoye, Arowolo Olatunji
Al-Bahir Journal for Engineering and Pure Sciences
A new two-parameter estimator was developed to combat the threat of multicollinearity for the linear regression model. Some necessary and sufficient conditions for the dominance of the proposed estimator over ordinary least squares (OLS) estimator, ridge regression estimator, Liu estimator, KL estimator, and some two-parameter estimators are obtained in the matrix mean square error sense. Theory and simulation results show that, under some conditions, the proposed two-parameter estimator consistently dominates other estimators considered in this study. The real-life application result follows suit.
