Open Access. Powered by Scholars. Published by Universities.®

Statistical Methodology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,072 Full-Text Articles 1,435 Authors 556,767 Downloads 118 Institutions

All Articles in Statistical Methodology

Faceted Search

1,072 full-text articles. Page 1 of 36.

The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test, Michael Scott Harwin 2023 Florida Institute of Technology - Melbourne

The Private Pilot Check Ride: Applying The Spacing Effect Theory To Predict Time To Proficiency For The Practical Test, Michael Scott Harwin

Theses and Dissertations

This study examined the relationship between a set of targeted factors and the total flight time students needed to become ready to take the private pilot check ride. The study was grounded in Ebbinghaus’s (1885/1913/2013) forgetting curve theory and spacing effect, and Ausubel’s (1963) theory of meaningful learning. The research factors included (a) training time to proficiency, which represented the number of training days needed to become check-ride ready; (b) flight training program (Part 61 vs. Part 141); (c) organization offering the training program (2- or 4-year college/university vs. FBO); (d) scheduling policy (mandated vs. student-driven); and demographical variables, which …


Using Geographic Information To Explore Player-Specific Movement And Its Effects On Play Success In The Nfl, Hayley Horn, Eric Laigaie, Alexander Lopez, Shravan Reddy 2023 Southern Methodist University

Using Geographic Information To Explore Player-Specific Movement And Its Effects On Play Success In The Nfl, Hayley Horn, Eric Laigaie, Alexander Lopez, Shravan Reddy

SMU Data Science Review

American Football is a billion-dollar industry in the United States. The analytical aspect of the sport is an ever-growing domain, with open-source competitions like the NFL Big Data Bowl accelerating this growth. With the amount of player movement during each play, tracking data can prove valuable in many areas of football analytics. While concussion detection, catch recognition, and completion percentage prediction are all existing use cases for this data, player-specific movement attributes, such as speed and agility, may be helpful in predicting play success. This research calculates player-specific speed and agility attributes from tracking data and supplements them with descriptive …


A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students, Christopher L. Thomas, Staci Zolkoski 2023 The University of Texas at Tyler

A Multivariate Investigation Of The Motivational, Academic, And Well-Being Characteristics Of First-Generation And Continuing-Generation College Students, Christopher L. Thomas, Staci Zolkoski

Journal of Research Initiatives

Prior research has noted differences in motivational, academic, and well-being factors between first-generation and continuing-education students. However, past investigations have primarily overlooked the interactive influence of protective and risk factors when comparing the characteristics of first-generation and continuing-education students. Thus, the current study adopted a multivariate approach to gain a more nuanced understanding of the influence of generational status on students' self-regulated learning capabilities, academic anxiety, sense of belonging, academic barriers, mental health concerns, and satisfaction with life. University students (N = 432, 67.46% Caucasian, 87.55% female, Age = 28.10 ± 9.46) completed the Cognitive Test Anxiety Scale-2nd …


Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies, Alexandru M. Draghici 2023 The University of Western Ontario

Addressing The Impact Of Time-Dependent Social Groupings On Animal Survival And Recapture Rates In Mark-Recapture Studies, Alexandru M. Draghici

Electronic Thesis and Dissertation Repository

Mark-recapture (MR) models typically assume that individuals under study have independent survival and recapture outcomes. One such model of interest is known as the Cormack-Jolly-Seber (CJS) model. In this dissertation, we conduct three major research projects focused on studying the impact of violating the independence assumption in MR models along with presenting extensions which relax the independence assumption. In the first project, we conduct a simulation study to address the impact of failing to account for pair-bonded animals having correlated recapture and survival fates on the CJS model. We examined the impact of correlation on the likelihood ratio test (LRT), …


Nonparametric Tests For Replicated Latin Squares, Joseph Yang 2023 Western Michigan University

Nonparametric Tests For Replicated Latin Squares, Joseph Yang

Dissertations

Two classes of nonparametric procedures for a replicated Latin square design that test for both general and increasing alternatives are developed. The two classes of procedures are similar in the sense that both transform the data so that existing well-known tests for randomized complete block designs can be utilized. On the other hand, the two classes differ in the way that the data is transformed - one class essentially aggregates the data while the other class aligns the data. Within these contexts, the exact distributions and asymptotic distributions are discussed, when applicable. The exact distributions are easily computed using the …


Functional Generalized Linear Mixed Models, Harmony Luce 2023 Western Michigan University

Functional Generalized Linear Mixed Models, Harmony Luce

Dissertations

With the advancements in data collection technologies, researchers in various fields such as epidemiology, chemometrics, and environmental science face the challenges of obtaining useful information from more detailed, complex, and intricately-structured data. Since the existing methods often are not suitable for such data, new statistical methods are developed to accommodate the complicated data structures.

As a part of such efforts, this dissertation proposes Functional Generalized Linear Mixed Model (FGLMM), which extends classical generalized linear mixed models to include functional covariates. Functional Data Analysis (FDA) is a rapidly developing area of statistics for data which can be naturally viewed as smooth …


Evaluating The Performance Of Estimators In Sem And Irt With Ordinal Variables, Bo Klauth 2023 Western Michigan University

Evaluating The Performance Of Estimators In Sem And Irt With Ordinal Variables, Bo Klauth

Dissertations

In conducting confirmatory factor analysis with ordered response items, the literature suggests that when the number of responses is five and item skewness (IS) is approximately normal, researchers can employ maximum likelihood with robust standard errors (MLR). However, MLR can yield biased factor loadings (FL) and FL standard errors (FLSE) when the variables are ordinal. Other estimators are available. Unweighted least squares and weighted least squares with adjusted mean and variance (ULSMV and WLSMV) are known as the estimators for CFA with ordinal variables (CFA-OV). Another estimator, marginal maximum likelihood (MML), is used in the item response theory (IRT), specifically …


Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research, Courtney Bonner, Anastasia (Stasi) D. Baran, Jason D. Fiege, Saman Muthukumarana 2023 nQube Data Science Inc.

Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research, Courtney Bonner, Anastasia (Stasi) D. Baran, Jason D. Fiege, Saman Muthukumarana

International Conference on Gambling & Risk Taking

Abstract:

A common difficulty when researching gambling topics is the availability of high-quality data sets for development and testing. Due to the high level of secrecy within the gambling industry, if data is obtained for research purposes it is often prohibitively obfuscated, incomplete, or aggregated. Although these data have allowed for advancement in academic work, it leaves both the researchers and readers left wondering about what would be possible if more detailed data sets were available. To mitigate the paucity of data available to researchers, we present a Markov chain-based statistical process for producing artificial event data for a simulated …


Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems, Marc Chale, Bruce Cox, Jeffery Weir, Nathaniel D. Bastian 2023 Army Cyber Institute, U.S. Military Academy

Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems, Marc Chale, Bruce Cox, Jeffery Weir, Nathaniel D. Bastian

ACI Journal Articles

Deep learning has enabled network intrusion detection rates as high as 99.9% for malicious network packets without requiring feature engineering. Adversarial machine learning methods have been used to evade classifiers in the computer vision domain; however, existing methods do not translate well into the constrained cyber domain as they tend to produce non-functional network packets. This research views the payload of network packets as code with many functional units. A meta-heuristic based generative model is developed to maximize classification loss of packet payloads with respect to a surrogate model by repeatedly substituting units of code with functionally equivalent counterparts. The …


Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr 2023 Eastern Virginia Medical School

Analytical Approach For Monitoring The Behavior Of Patients With Pancreatic Adenocarcinoma At Different Stages As A Function Of Time, Aditya Chakaborty Dr, Chris P. Tsokos Dr

Biology and Medicine Through Mathematics Conference

No abstract provided.


Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning, Mary Lena Bleile 2023 Southern Methodist University

Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning, Mary Lena Bleile

Statistical Science Theses and Dissertations

Tumor xenograft experiments are a popular tool of cancer biology research. In a typical such experiment, one implants a set of animals with an aliquot of the human tumor of interest, applies various treatments of interest, and observes the subsequent response. Efficient analysis of the data from these experiments is therefore of utmost importance. This dissertation proposes three methods for optimizing cancer treatment and data analysis in the tumor xenograft context. The first of these is applicable to tumor xenograft experiments in general, and the second two seek to optimize the combination of radiotherapy with immunotherapy in the tumor xenograft …


Movie Recommender System Using Matrix Factorization, Roland Fiagbe 2023 University of Central Florida

Movie Recommender System Using Matrix Factorization, Roland Fiagbe

Data Science and Data Mining

Recommendation systems are a popular and beneficial field that can help people make informed decisions automatically. This technique assists users in selecting relevant information from an overwhelming amount of available data. When it comes to movie recommendations, two common methods are collaborative filtering, which compares similarities between users, and content-based filtering, which takes a user’s specific preferences into account. However, our study focuses on the collaborative filtering approach, specifically matrix factorization. Various similarity metrics are used to identify user similarities for recommendation purposes. Our project aims to predict movie ratings for unwatched movies using the MovieLens rating dataset. We developed …


Brief Review: Low Frequency Event Charts (G-Charts) In Healthcare, James Espinosa, David Ho, Alan Lucerna, Henry Schuitema 2023 Rowan University

Brief Review: Low Frequency Event Charts (G-Charts) In Healthcare, James Espinosa, David Ho, Alan Lucerna, Henry Schuitema

Stratford Campus Research Day

The ability to determine if a change in a system is actually an improvement—or worsening in function—is one of the essential desiderata of quality improvement efforts. There are many ways to look at the issue. A special problem occurs when the event being studied is low frequency by nature. By way of example, patient falls in a given hospital or division of a hospital may occur in a way that is low frequency—yet each event is important. Process engineering has developed an approach to low frequency events. Part of this approach may involve specialized charts that look at the “time-between-events”—as …


A Monte Carlo Analysis Of Nonprobability Sampling & Post Hoc Corrections, Julia Hong 2023 Western Kentucky University

A Monte Carlo Analysis Of Nonprobability Sampling & Post Hoc Corrections, Julia Hong

Masters Theses & Specialist Projects

Nonprobability samples are often used in place of probability samples because the former are less trouble and less expensive. Unfortunately, it is difficult to determine how well a sample represents population parameters when using nonprobability samples. Researchers attempt to mitigate the disadvantages of nonprobability sampling by performing post hoc corrections, but this adjustment may not successfully undo the effects of nonprobability sampling. To examine these effects, a Monte Carlo simulation was conducted to create a pseudo-population from which samples were drawn. Forty-one conditions were replicated 10,000 times each, with each sample consisting of 100 observations. A post-stratification adjustment was made …


Distance Correlation Based Feature Selection In Random Forest, Jose Munoz-Lopez 2023 California State University - San Bernardino

Distance Correlation Based Feature Selection In Random Forest, Jose Munoz-Lopez

Electronic Theses, Projects, and Dissertations

The Pearson correlation coefficient is a commonly used measure of correlation, but it has limitations as it only measures the linear relationship between two numerical variables. In 2007, Szekely et al. introduced the distance correlation, which measures all types of dependencies between random vectors X and Y in arbitrary dimensions, not just the linear ones. In this thesis, we propose a filter method that utilizes distance correlation as a criterion for feature selection in Random Forest regression. We conduct extensive simulation studies to evaluate its performance compared to existing methods under various data settings, in terms of the prediction mean …


Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists, Graham Nash 2023 Kennesaw State University

Employee Attrition: Analyzing Factors Influencing Job Satisfaction Of Ibm Data Scientists, Graham Nash

Symposium of Student Scholars

Employee attrition is a relevant issue that every business employer must consider when gauging the effectiveness of their employees. Whether or not an employee chooses to leave their job can come from a multitude of factors. As a result, employers need to develop methods in which they can measure attrition by calculating the several qualities of their employees. Factors like their age, years with the company, which department they work in, their level of education, their job role, and even their marital status are all considered by employers to assist in predicting employee attrition. This project will be analyzing a …


Length Bias Estimation Of Small Businesses Lifetime, Simeng Li 2023 University of Richmond

Length Bias Estimation Of Small Businesses Lifetime, Simeng Li

Honors Theses

Small businesses, particularly restaurants, play a crucial role in the economy by generating employment opportunities, boosting tourism, and contributing to the local economy. However, accurately estimating their lifetimes can be challenging due to the presence of length bias, which occurs when the likelihood of sampling any particular restaurant's closure is influenced by its duration in operation. To address the issue, this study conducts goodness-of-fit tests on exponential/gamma family distributions and employs the Kaplan-Meier method to more accurately estimate the average lifetime of restaurants in Carytown. By providing insights into the challenges of estimating the lifetimes of small businesses, this study …


That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling, Mary Bernstein 2023 University of South Carolina - Columbia

That’S My Deity: An Examination Of Online Lokean Cultures Through Log-Linear Modeling, Mary Bernstein

Senior Theses

A rise in online religious communities and the growth of so-called ‘Old World’ religions are reflected in the internet’s subcultures of Neopaganism, a growing religious movement that has been documented in America since the 1960s. The religions under this umbrella movement vary drastically and include belief systems such as Wicca, Druidry, and deity worship. Belief systems under this movement lack the traditional hierarchy found in structured religion and lack a singular sacred text. As such, believers usually find and support one another not through a physical sacred place of meeting, but through an online community that acts as sacred space. …


Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population, Emily Bonus 2023 Liberty University

Prevalence Of Sars-Cov-2 Antibodies In Liberty University Student Population, Emily Bonus

Senior Honors Theses

In 2020, the virus SARS-CoV-2 gained attention as it spread around the world. Its antibodies are poorly understood, and little research focuses on those with few COVID-19 complications yet large numbers of close contacts: university students. This longitudinal study recorded SARS-CoV-2 antibody presence in 107 undergraduate Liberty University students twice during early 2021. After extensive data cleaning and the application of various statistical tests and ANOVAs, the data seems to show that in the case of COVID-19 infections, SARS-CoV-2 IgM antibodies are immediately produced, and then IgG antibodies follow later. However, the COVID-19 vaccine causes the production of both IgM …


Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data, Louis Vazquez 2023 Southern Methodist University

Influence Diagnostics For Generalized Estimating Equations Applied To Correlated Categorical Data, Louis Vazquez

Statistical Science Theses and Dissertations

Influence diagnostics in regression analysis allow analysts to identify observations that have a strong influence on model fitted probabilities and parameter estimates. The most common influence diagnostics, such as Cook’s Distance for linear regression, are based on a deletion approach where the results of a model with and without observations of interest are compared. Here, deletion-based influence diagnostics are proposed for generalized estimating equations (GEE) for correlated, or clustered, nominal multinomial responses. The proposed influence diagnostics focus on GEEs with the baseline-category logit link function and a local odds ratio parameterization of the association structure. Formulas for both observation- and …


Digital Commons powered by bepress