Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,370 Full-Text Articles 2,660 Authors 428,874 Downloads 133 Institutions

All Articles in Quantum Physics

Faceted Search

1,370 full-text articles. Page 5 of 56.

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao 2023 Old Dominion University

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao

Physics Faculty Publications

We explore the potential of jet observables in charged-current deep inelastic scattering events at the future Electron-Ion Collider. Tagging jets with a recoiling neutrino, which can be identified by the event’s missing transverse momentum, will allow for flavor-sensitive measurements of transverse momentum dependent parton distribution functions. We present the first predictions for transverse-spin asymmetries in azimuthal neutrino-jet correlations and hadron-in-jet measurements. We study the kinematic reach and the precision of these measurements and explore their feasibility using parametrized detector simulations. We conclude that jet production in charged-current deep inelastic scattering, while challenging in terms of luminosity requirements, will complement the …


Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli 2023 Universitá de Torino

Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli

Physics Faculty Publications

Extending the transverse momentum dependent factorization to thrust dependent observables entails a series of difficulties, ultimately associated to the behavior of soft radiation. As a consequence, the definition of the transverse momentum dependent functions has to be revised, while preserving (and possibly extending) their universality properties. Moreover, the regularization of the rapidity divergences generates non trivial correlations between rapidity and thrust. In this paper, we show how to deal with these correlations in a consistent treatment of the thrust dependence of e+eh X cross section, where the hadron transverse momentum is measured with respect to …


Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et al. 2023 Old Dominion University

Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al.

Physics Faculty Publications

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.2 and 10.6 GeV incident on an unpolarized liquid-hydrogen target using the CLAS12 spectrometer at Jefferson Lab. Observed nonzero sinΔϕ modulations in ep→e'pπ+ X events, where Δϕ is the difference …


A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, et al. 2023 Old Dominion University

A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al.

Physics Faculty Publications

A multidimensional extraction of the structure function ratio from the hard exclusive ep → e'n��+ reaction above the resonance region has been performed. The study was done based on beam-spin asymmetry measurements using a 10.6 GeV incident electron beam on a liquid-hydrogen target and the CLAS12 spectrometer at Jefferson Lab. The measurements focus on the very forward regime (t/Q2≪ 1) with a wide kinematic range of in the valence regime (0.17 < ��B < 0.55), and virtualities ranging from 1.5 GeV2 up to 6 GeV2. The results and their comparison to theoretical models based on Generalized Parton Distributions demonstrate the sensitivity to chiral-odd …


Scattered Spectra From Inverse Compton Sources Operating At High Laser Fields And High Electron Energies, Geoffrey A. Krafft, Balša Terzić, Erik Johnson, G. Wilson 2023 Old Dominion University

Scattered Spectra From Inverse Compton Sources Operating At High Laser Fields And High Electron Energies, Geoffrey A. Krafft, Balša Terzić, Erik Johnson, G. Wilson

Physics Faculty Publications

As Compton x-ray and gamma-ray sources become more prevalent, to understand their performance in a precise way, it becomes important to be able to compute the distribution of scattered photons precisely. For example, codes have been developed at Old Dominion University which were used to understand the performance of the Dresden Compton Source in detail. An ideal model would (i) include the full Compton effect frequency relations between incident and scattered photons, (ii) allow the field strength to be large enough that nonlinear effects are captured, and (iii) allow the effects of electron beam emittance to be introduced and studied. …


Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers 2023 Universitá degli Studi di Torino

Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers

Physics Faculty Publications

Parametrizing TMD parton densities and fragmentation functions in ways that consistently match their large transverse-momentum behavior in standard collinear factorization has remained notoriously difficult. We show how the problem is solved in a recently introduced set of steps for combining perturbative and nonperturbative transverse momentum in TMD factorization. Called a “bottom-up” approach in a previous article, here we call it a “hadron structure oriented” (HSO) approach to emphasize its focus on preserving a connection to the TMD parton model interpretation. We show that the associated consistency constraints improve considerably the agreement between parametrizations of TMD functions and their large-kT behavior, …


Searching For Prompt And Long-Lived Dark Photons In Electroproduced E⁺ E⁻ Pairs With The Heavy Photon Search Experiment At Jlab, P. H. Adrian, N. A. Baltzell, M. Battaglieri, M. Bondí, S. Boyarinov, S. Bueltmann, P. Butti, V. D. Burkert, D. Calvo, T. Cao, M. Carpinelli, A. Celentano, G. Charles, L. Colaneri, W. Cooper, D. Crowe, C. Cuevas, A. D'Angelo, N. Dashyan, B. Wojtsekhowski, Et al. 2023 Old Dominion University

Searching For Prompt And Long-Lived Dark Photons In Electroproduced E⁺ E⁻ Pairs With The Heavy Photon Search Experiment At Jlab, P. H. Adrian, N. A. Baltzell, M. Battaglieri, M. Bondí, S. Boyarinov, S. Bueltmann, P. Butti, V. D. Burkert, D. Calvo, T. Cao, M. Carpinelli, A. Celentano, G. Charles, L. Colaneri, W. Cooper, D. Crowe, C. Cuevas, A. D'Angelo, N. Dashyan, B. Wojtsekhowski, Et Al.

Physics Faculty Publications

The heavy photon search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electroproduced dark photons. We report results from the 2016 engineering run consisting of 10 608  nb−1 of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the e+e invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of ε2≳10−5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background …


Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero 2023 Old Dominion University

Prospects For 𝛾*𝛾* → 𝜋𝜋 Via Lattice Qcd, Raúl Briceño, Andrew W. Jackura, Arkaitz Rodas, Juan V. Guerrero

Physics Faculty Publications

The 𝛾*𝛾* → 𝜋𝜋 scattering amplitude plays a key role in a wide range of phenomena, including understanding the inner structure of scalar resonances as well as constraining the hadronic contributions to the anomalous magnetic moment of the muon. In this work, we explain how the infinite-volume Minkowski amplitude can be constrained from finite-volume Euclidean correlation functions. The relationship between the finite-volume Euclidean correlation functions and the desired amplitude holds up to energies where 3𝜋 states can go on shell, and is exact up to exponentially small corrections that scale like 𝒪(e−m𝜋L), where L is the spatial extent …


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan 2023 Old Dominion University

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers 2023 Old Dominion University

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


Two-Point Correlator Of Twist-2 Light-Ray Operators In N=Sym In Bfkl Approximation, Ian Balitsky, Vladimir Kazakov, Evgeny Sobko 2023 Old Dominion University

Two-Point Correlator Of Twist-2 Light-Ray Operators In N=Sym In Bfkl Approximation, Ian Balitsky, Vladimir Kazakov, Evgeny Sobko

Physics Faculty Publications

We generalize local operators of the leading twist-2 of 𝒩 = SYM theory to the case of complex Lorentz spin j using principal series representation of sl(2, R). We give the direct computation of correlation function of two such non-local operators in the BFKL regime when j → 1. The correlator appears to have the expected conformal coordinate dependence governed by the anomalous dimension of twist-2 operator in NLO BFKL approximation predicted by Kotikov and Lipatov.


Detailed Study Of Quark-Hadron Duality In Spin Structure Functions Of The Proton And Neutron, V. Lagerquist, S. E. Kuhn, N. Sato 2023 Old Dominion University

Detailed Study Of Quark-Hadron Duality In Spin Structure Functions Of The Proton And Neutron, V. Lagerquist, S. E. Kuhn, N. Sato

Physics Faculty Publications

Background: The response of hadrons, the bound states of the strong force (QCD), to external probes can be described in two different, complementary frameworks: as direct interactions with their fundamental constituents, quarks and gluons, or alternatively as elastic or inelastic coherent scattering that leaves the hadrons in their ground state or in one of their excited (resonance) states. The former picture emerges most clearly in hard processes with high momentum transfer, where the hadron response can be described by the perturbative expansion of QCD, while at lower energy and momentum transfers, the resonant excitations of the hadrons dominate the cross …


Constraints On The Onset Of Color Transparency From Quasielastic ¹²C(E, E′P) Up To Q² = (14.2 Gev /C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, C. Ayerbe Gayoso, M. L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, A. Asaturyan, K. Assumin-Gyimah, A. Bandari, S. Basnet, V. Berdnikov, J. Zhang, et al., Hall C. Collaboration 2023 Old Dominion University

Constraints On The Onset Of Color Transparency From Quasielastic ¹²C(E, E′P) Up To Q² = (14.2 Gev /C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, C. Ayerbe Gayoso, M. L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, A. Asaturyan, K. Assumin-Gyimah, A. Bandari, S. Basnet, V. Berdnikov, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

Quasielastic scattering on 12C(e,e′p) was measured in Hall C at Jefferson Lab for spacelike four-momentum transfer squared Q2 in the range of 8–14.2(GeV/c)2 with proton momenta up to 8.3GeV/c. The experiment was carried out in the upgraded Hall C at Jefferson Lab. It used the existing high-momentum spectrometer and the new super-high-momentum spectrometer to detect the scattered electrons and protons in coincidence. The nuclear transparency was extracted as the ratio of the measured yield to the yield calculated in the plane wave impulse approximation. Additionally, the transparency of the 1s1/2 and 1p3/2 shell …


First Measurement Of The Emc Effect In ¹⁰B And ¹¹B, A. Karki, D. Biswas, F. A. Gonzalez, W. Henry, C. Morean, A. Nadeeshani, A. Sun, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, J. Arrington, D. Asaturyan, K. Assumin-Gyimah, C. Ayerbe Gayoso, A. Bandari, J. Zhang, et al., Hall C. Collaboration 2023 Old Dominion University

First Measurement Of The Emc Effect In ¹⁰B And ¹¹B, A. Karki, D. Biswas, F. A. Gonzalez, W. Henry, C. Morean, A. Nadeeshani, A. Sun, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, J. Arrington, D. Asaturyan, K. Assumin-Gyimah, C. Ayerbe Gayoso, A. Bandari, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

The nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in 10B and 11B. Previous measurements of the EMC effect in A ≤ 12 nuclei showed an unexpected nuclear dependence; 10B and 11B were measured to explore the EMC effect in this region in more detail. Results are presented for 9Be, 10B, 11B, and 12C at an incident beam energy of 10.6 GeV. The EMC effect in the boron isotopes was found to be similar to …


Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu 2023 Bard College

Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu

Senior Projects Spring 2023

The quantum theory of gravity has eluded physicists for many decades. The apparent contradiction between the physics describing the microscopic and the macroscopic regimes has given rise to some beautiful theories and mathematics. In this paper, we discuss some aspects of one of those theories, namely loop quantum gravity (LQG). Specifically, we discuss the discreteness of spacetime, a feature that distinguishes LQG from some of the other contending theories. After a general discussion in the introduction, we discuss the dynamics and quantization of the simplices (tetrahedra) that make up the space. The discrete geometry of these tetrahedral grains of space …


Theoretical Foundations Of Quantum Computing And The Implementation Of The Quantum Fourier Transform, Natalia Dziubelski 2023 Bard College

Theoretical Foundations Of Quantum Computing And The Implementation Of The Quantum Fourier Transform, Natalia Dziubelski

Senior Projects Spring 2023

Quantum computing is a growing field with the potential to revolutionize computation. This thesis explores the foundations of quantum computing with specific focus on the efficacy of the Quantum Fourier Transform (QFT). The fundamentals of quantum computing were described through an explanation of quantum mechanics and the mathematics needed to understand the quantum computing model and its operations. Using IBM’s simulators and quantum processors, the QFT was implemented on a classical data set, and the results were compared to the predicted output values. It was found that the QFT simulator was able to produce results consistent with Discrete Fourier Transform, …


Compiling Quantum Programs, Li-Heng Henry Chang 2023 Bard College

Compiling Quantum Programs, Li-Heng Henry Chang

Senior Projects Spring 2023

This thesis introduces the quantum compilation problem and develops a prototypical compiler. The problem of quantum compiling is, in essence, converting high-level human expressions of quantum programs into low-level hardware executable code. Compilers that target different hardware platforms enable portable code that can be used to benchmark hardware performance, reduce programming work and speed up development. Because quantum systems are subjected to phenomena such as noise, no-cloning and decoherence, the challenge of quantum compiling is tied to the optimization of program runtimes and the lengths of compiled sequences. For near-term intermediate scale quantum (NISQ) computers with limited hardware resources and …


Resonance Signatures In 𝜋+𝜋− Scattering: Theoretical Analysis And Interpretation, Mayul Verma 2023 University of Delhi

Resonance Signatures In 𝜋+𝜋− Scattering: Theoretical Analysis And Interpretation, Mayul Verma

2023 REYES Proceedings

Hadron colour confinement, a phenomenon central to Quantum Chromodynamics (QCD), presents a formidable challenge in theoretical physics. The non-perturbative nature of confinement necessitates innovative approaches to the production of and reaction mechanisms between these subatomic particles. In the pursuit of comprehending the fundamental constituents of matter, particle resonances assume a pivotal role. Through the utilization of advanced methodologies like 𝑆-Matrix formulations, more profound insights into resonance phenomena and their effects on the dynamics of particle interactions can be attained. This research paper embarks on a mathematical journey that holds the potential to shed light on the intricate structure of particle …


Algebraic Tunnelling, Gaurab Sedhain 2023 Leipzig University

Algebraic Tunnelling, Gaurab Sedhain

2023 REYES Proceedings

We study the quantum phenomenon of tunnelling in the framework of algebraic quantum theory, motivated by the tunnelling aspects of false vacuum decay. We see that resolvent C*-algebra, proposed relatively recently by Buchholz and Grundling rather than Weyl algebra provides an appropriate framework for treating the dynamics of non-free quantum mechanical system as an algebraic automorphism. At the end, we propose to investigate false vacuum decay in algebraic quantum field theoretic setting in terms of the two-point correlation function which gives us the tunneling probability, with the corresponding C*-algebraic construction.


Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao 2023 Old Dominion University

Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao

Physics Faculty Publications

We demonstrate that gluon transverse-momentum-dependent parton distribution functions (TMDPDFs) can be extracted from lattice calculations of appropriate Euclidean correlations in large-momentum effective theory (LaMET). Based on perturbative calculations of gluon unpolarized and helicity TMDPDFs, we present a matching formula connecting them and their LaMET counterparts, where the latter are renormalized in a scheme facilitating lattice calculations and converted to the MS ¯ scheme. The hard matching kernel is given up to one-loop level. We also show that the perturbative result is independent of the prescription used for the pinch-pole singularity in the relevant correlations. Our results offer a guidance for …


Digital Commons powered by bepress