Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

35,980 Full-Text Articles 57,788 Authors 10,559,389 Downloads 299 Institutions

All Articles in Physics

Faceted Search

35,980 full-text articles. Page 3 of 1102.

Identifying Transitions In Plasma With Topological Data Analysis Of Noisy Turbulence, Julius Kiewel 2024 William & Mary

Identifying Transitions In Plasma With Topological Data Analysis Of Noisy Turbulence, Julius Kiewel

Undergraduate Honors Theses

Cross-field transport and heat loss in a magnetically confined plasma is determined by turbulence driven by perpendicular (to the magnetic field) pressure gradients. The heat losses from turbulence can make it difficult to maintain the energy density required to reach and maintain the conditions necessary for fusion. Self-organization of turbulence into intermediate scale so-called zonal flows can reduce the radial heat losses, however identifying when the transition occurs and any precursors to the transition is still a challenge. Topological Data Analysis (TDA) is a mathematical method which is used to extract topological features from point cloud and digital data to …


Improving The Scalability Of Neural Network Surface Code Decoders, Kevin Wu 2024 William & Mary

Improving The Scalability Of Neural Network Surface Code Decoders, Kevin Wu

Undergraduate Honors Theses

Quantum computers have recently gained significant recognition due to their ability to solve problems intractable to classical computers. However, due to difficulties in building actual quantum computers, they have large error rates. Thus, advancements in quantum error correction are urgently needed to improve both their reliability and scalability. Here, we first present a type of topological quantum error correction code called the surface code, and we discuss recent developments and challenges of creating neural network decoders for surface codes. In particular, the amount of training data needed to reach the performance of algorithmic decoders grows exponentially with the size of …


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg 2024 University of Arkansas, Fayetteville

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley 2024 The Texas Medical Center Library

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


Table Of Contents, 2024 University of South Carolina

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Technology Development And Materials Research To Enable A Sustainable D-T Fusion Energy Fuel Cycle, Brenda L. Garcia-Diaz, David Babineau, James Klein, Robert Allgood, George Larsen, Holly B. Flynn, Dale Hitchcock, Tim Krentz, Chris Dandeneau, Lucas Angelette, Robert Sindelar 2024 Savannah River National Laboratory

Technology Development And Materials Research To Enable A Sustainable D-T Fusion Energy Fuel Cycle, Brenda L. Garcia-Diaz, David Babineau, James Klein, Robert Allgood, George Larsen, Holly B. Flynn, Dale Hitchcock, Tim Krentz, Chris Dandeneau, Lucas Angelette, Robert Sindelar

Journal of the South Carolina Academy of Science

No abstract provided.


Divergence-Free Tensor Densities In Two Dimensions, Tyler Hansen 2024 Utah State University

Divergence-Free Tensor Densities In Two Dimensions, Tyler Hansen

All Graduate Theses and Dissertations, Fall 2023 to Present

In physics, a common method for exploring the way a physical system changes over time is to look at the system’s energy. Roughly speaking, the energy in these systems are either motion-based (kinetic energy, a bullet in flight) or position-based (potential energy, a rock sitting at the top of a hill). The difference between the system’s total kinetic and potential energies is quantified by an expression called the Lagrangian. Using a special procedure, this Lagrangian is massaged to produce a group of equations called the Euler-Lagrange equations; if the initial configuration of the system is provided, the solution to these …


Measurement Of Transmission Efficiency Of Blue Light Blocking Devices, Jada Lee 2024 Lincoln Memorial University

Measurement Of Transmission Efficiency Of Blue Light Blocking Devices, Jada Lee

Honors Theses

Technology and light sources have experienced a revolution in recent years leading to the production of light emitting diode (LED) bulbs. White-light LED bulbs undergo degradation over time, leading to a rise in color temperature and a proportional increase in the emission of blue light from these bulbs. The small size of LEDs makes them the optimal choice for electronic devices because of their limited screen size. This means that blue light now exists in red, green, and blue solid-state illumination systems that did not exist a decade ago. It is debated if blue light induces toxic effects on the …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas 2024 University of Arkansas, Fayetteville

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas 2024 University of Arkansas, Fayetteville

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Exploring The Coronal Magnetic Field With Galactic Cosmic Rays: The Sun Shadow Observed By Hawc, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, et al. 2024 Universidad Nacional Autónoma de México

Exploring The Coronal Magnetic Field With Galactic Cosmic Rays: The Sun Shadow Observed By Hawc, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, Et Al.

Michigan Tech Publications, Part 2

Galactic cosmic rays (GCRs) are charged particles that reach the heliosphere almost isotropically in a wide energy range. In the inner heliosphere, the GCR flux is modulated by solar activity so that only energetic GCRs reach the lower layers of the solar atmosphere. In this work, we propose that high-energy GCRs can be used to explore the solar magnetic fields at low coronal altitudes. We used GCR data collected by the High-Altitude Water Cherenkov observatory to construct maps of GCR flux coming from the Sun’s sky direction and studied the observed GCR deficit, known as Sun shadow (SS), over a …


Impact Of Property Covariance On Cluster Weak Lensing Scaling Relations, Zhuowen Zhang, Arya Farahi, Daisuke Nagai, Erwin T. Lau, Joshua Frieman, Marina Ricci, Anja Von der Linden, Hao-Yi Wu, LSST Dark Energy Science Collaboration 2024 University of Chicago

Impact Of Property Covariance On Cluster Weak Lensing Scaling Relations, Zhuowen Zhang, Arya Farahi, Daisuke Nagai, Erwin T. Lau, Joshua Frieman, Marina Ricci, Anja Von Der Linden, Hao-Yi Wu, Lsst Dark Energy Science Collaboration

Physics Faculty Publications and Presentations

We present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, ΔΣ, and the ‘true’ cluster galaxy number count, Ngal, as measured within a spherical volume that is void of projection effects. By quantifying the impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2 simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these observables within the three-dimensional vicinity of …


A Comparative Analysis Of Field Electron Emission From Carbon Black Embedded Within Insulated Copper Hollowed Wires And Glass Tubes, Hatem A. Al-Braikat, Ahmad M D Jaber, Adel M. Abuamr, Mazen A. Madanat, Aseel A. Al-Jbarart, M-Ali H. Al-Akhras, Marwan S. Mousa 2024 Surface Physics and Materials Technology Laboratory, Department of Physics, Mutah University, Al-Karak, Jordan

A Comparative Analysis Of Field Electron Emission From Carbon Black Embedded Within Insulated Copper Hollowed Wires And Glass Tubes, Hatem A. Al-Braikat, Ahmad M D Jaber, Adel M. Abuamr, Mazen A. Madanat, Aseel A. Al-Jbarart, M-Ali H. Al-Akhras, Marwan S. Mousa

Karbala International Journal of Modern Science

In this study, two different methods are used to investigate carbon black as a cold field electron emitter. The first method is to incorporate carbon black into a specially designed insulated copper hollowed wire. The wire has a cup-shaped structure created by electrochemical etching. The second method involves the incorporation of carbon black into narrow glass tubes. A Comparative analyses is carried out to evaluate the effectiveness of each method. To evaluate the performance of the samples, the current-voltage characteristics will be examined using field electron microscopes. This analysis will provide an understanding of the emission of the carbon black …


Classification Of Topological Defects In Cosmological Models, Abigail Swanson 2024 University of Mary Washington

Classification Of Topological Defects In Cosmological Models, Abigail Swanson

Student Research Submissions

In nature, symmetries play an extremely significant role. Understanding the symmetries of a system can tell us important information and help us make predictions. However, these symmetries can break and form a new type of symmetry in the system. Most notably, this occurs when the system goes through a phase transition. Sometimes, a symmetry can break and produce a tear, known as a topological defect, in the system. These defects cannot be removed through a continuous transformation and can have major consequences on the system as a whole. It is helpful to know what type of defect is produced when …


Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang 2024 Electrical and Electronic Engineering Department, Faculty of Engineering, University of Kerbala, Karbala, Iraq

Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang

Karbala International Journal of Modern Science

Biaxial-oriented polypropylene (BOPP) films are characterized by unfavorable aging behavior because of their poor susceptibility to high temperatures, humidity, and high electric fields. This makes them unqualified to withstand harsh operating conditions, such as in capacitor applications. This study investigates the impact of annealing BOPP samples at 100 °C for five hours after fluorination at different times (15, 30, and 60 minutes) on their electrical and mechanical performance under electro-thermal stresses. Scanning electron microscope (SEM) images confirm that there is an increase in surface roughness and the formation of a dense layer of fluorine-containing groups monotonically with fluorination time. So, …


Simulating Ice Particle Properties Under Varying Electric Fields, Joseph Cooney 2024 Utah State University

Simulating Ice Particle Properties Under Varying Electric Fields, Joseph Cooney

Physics Capstone Projects

In this study, the interactions between atmospheric water molecules and an electrically charged dust particle were simulated in python to determine the role of electric charge and electric fields in atmospheric ice formation. Multiple levels of electric charge were tested, corresponding to different strengths of atmospheric electric fields. The TIP4P-2005 model for water was used to simulate these molecules under the influence of a central electric potential to represent the charged dust particle. These included a control group with no electric field (0 C), a group under a fair-weather strength of electric field (1.6*10-14 C), a foul-weather electric field (1.6*10-12 …


Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang 2024 Department of Refrigeration and Air Conditioning Engineering, Politeknik Negeri Bandung, Bandung 40599, Indonesia

Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang

Makara Journal of Technology

Thermoelectric devices have been widely used in various applications, including cooling and power generation. The potential application of thermoelectric cooling systems has been studied. However, these systems still face challenges in achieving optimal performance compared with other cooling systems. Several factors, including the hot-side cooling method, influence the performance of thermoelectric systems. This study aimed to investigate the effects of different hot-side cooling methods on the thermoelectric performance and thermal behavior of thermoelectric cooling systems. The testing methods involved the combination of the thermoelectric module with five hot-side heat exchangers, including a square heatsink, a round heatsink, a two-pipe heat …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti 2024 Rowan University

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo 2024 University of Konstanz

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of …


Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle 2024 Air Force Institute of Technology

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Digital Commons powered by bepress