Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2,148 Full-Text Articles 5,059 Authors 521,939 Downloads 155 Institutions

All Articles in Atomic, Molecular and Optical Physics

Faceted Search

2,148 full-text articles. Page 2 of 74.

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone 2023 Air Force Institute of Technology

Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone

Faculty Publications

This paper concerns the development of a machine learning tool to detect anomalies in the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA reconstruction to create the model, using real images taken with an electron microscope in training and testing. The methodology developed allows for the creation of a defect detection model, without any labeled images of defects being required for training. The model performed well on all tests under the established assumptions, allowing for reliable anomaly detection. To the best of our knowledge, such methods are not currently available in the open …


Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo 2023 Western Michigan University

Simulating Strongly Coupled Many-Body Systems With Quantum Algorithms, Manqoba Qedindaba Hlatshwayo

Dissertations

The complexity of the nuclear many-body problem is a severe obstacle to finding a general and accurate numerical approach needed to simulate medium-mass and heavy nuclei. Even with the advent of exascale classical computing, the impediment of exponential growth of the Hilbert space renders the problem intractable for most classical calculations. In the last few years, quantum algorithms have become an attractive alternative for practitioners because quantum computers are more efficient in simulating quantum physics than classical computers. While a fully fault-tolerant universal quantum computer will not be realized soon, this dissertation explores quantum algorithms for simulating nuclear physics suitable …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish 2023 Clemson University

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper 2023 University of New Mexico

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Study Of Radiation Effects In Gan-Based Devices, Han Gao 2023 Southern Methodist University

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Application Of A Diatomic Molecule Model Potential To A Series Of Homo- And Heterodiatomic Molecules, Dorien E. Carpenter, Javier E. Hasbun 2023 University of West Georgia

Application Of A Diatomic Molecule Model Potential To A Series Of Homo- And Heterodiatomic Molecules, Dorien E. Carpenter, Javier E. Hasbun

Georgia Journal of Science

We apply a one-dimensional classical model of a diatomic molecule model potential with modifications to H2, HF, LiF, N2, and CO. We obtain the unknown parameters of this model by digitizing plots of the potential curves for the molecules from a published, Hartree-Fock based theoretical electron correlation calculation (Piris 2017). We then apply the method of successive approximations to the model in order to calculate the wavenumber for each molecule in the series. The wavenumber depends on a parameter which in turn depends on the initial conditions. The value of this parameter for each individual molecule …


Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf 2023 Department of Physics, Faculty of Science, Beirut Arab University, Lebanon

Size Effect On The Optical Response Of Cylindrical Palladium Nanoparticles, Salem Marhaba, Mohammed Khalaf

BAU Journal - Science and Technology

In this work, a computational study is carried out to investigate the optical response of palladium nano-cylinders. The Finite Element Method (FEM) is employed using the COMSOL MULTIPHYSICS simulation program to calculate the scattering, absorption, and extinction cross-sections. The influence of the size of the cylindrical nanoparticles on their optical properties is discussed. The results are plotted for a broad spectral range of wavelengths from ultra-violet to infra-red of the incident electromagnetic wave on the cylindrical nanoparticles.


Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton 2023 Air Force Institute of Technology

Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Cadmium germanium diphosphide (CdGeP2) crystals, with versatile terahertz-generating properties, belong to the chalcopyrite family of nonlinear optical materials. Other widely investigated members of this family are ZnGeP2 and CdSiP2. The room-temperature absorption edge of CdGeP2 is near 1.72 eV (720 nm). Cadmium vacancies, phosphorous vacancies, and germanium-on-cadmium antisites are present in as-grown CdGeP2 crystals. These unintentional intrinsic point defects are best studied below room temperature with electron paramagnetic resonance (EPR) and optical absorption. Prior to exposure to light, the defects are in charge states that have no unpaired spins. Illuminating a CdGeP2 …


A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler 2023 California Polytechnic State University, San Luis Obispo

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani 2023 United Arab Emirates University

Design Modular Command And Data Handling Subsystem Hardware Architectures, Abdullah Alsalmani

Theses

Over the past few years, On-Board Computing Systems for satellites have been facing a limited level of modularity. Modularity is the ability to reuse and reconstruct the system from a set of predesigned units, with minimal additional engineering effort. CDHS hardware systems currently available have a limited ability to scale with mission needs. This thesis addresses the integration of smaller form factor CDHS modules used for nanosatellites with the larger counterparts that are used for larger missions. In particular, the thesis discusses the interfacing between Modular Computer Systems based on Open Standard commonly used in large spacecrafts and PC/104 used …


Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari 2023 University of New Mexico - Main Campus

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn 2023 Dartmouth College

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh 2023 Bridgewater State University

Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh

Honors Program Theses and Projects

Netropsin is an antibiotic that binds in the minor grooves of DNA, which also exhibits anticancer properties. There have been many previous studies that explored the binding of this drug to DNA using traditional methods where an ensemble averaging is used. In this study we explore the interaction of Netropsin with DNA at a single molecule level using dual beam optical tweezers. We trapped and stretched a single DNA molecule using optical tweezers to measure the force experienced by the DNA as a function of extension in the absence and presence of various concentrations of Netropsin. Our results show the …


Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. McCluskey, A. Kumar, Alexei Gruverman, I. Luk’yanchuk, J. M. Gregg 2023 Queen’s University Belfast

Domain Wall Saddle Point Morphology In Ferroelectric Triglycine Sulfate, C. J. Mccluskey, A. Kumar, Alexei Gruverman, I. Luk’Yanchuk, J. M. Gregg

Alexei Gruverman Publications

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of …


Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay 2023 University of Tennessee, Knoxville

Pointing Control And Stabilization Of The High-Energy Uv Laser For Laser-Assisted Charge Exchange, Martin Joseph Kay

Doctoral Dissertations

Laser-Assisted Charge Exchange (LACE) is an experimental method of charge exchange injection into a proton accumulator ring that is being developed at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory (ORNL) as an alternative to hazardous injection foils. The current scheme of LACE requires a high-energy, low-repetition-rate UV (355 nm) laser beam (140 mJ pulses at 10 Hz) to be transported over 65 meters to the laser-particle interaction point (IP) in a high-radiation area of the accelerator. Thermal effects and other disturbances along the free-space laser transport line cause the beam to slowly drift away from the IP …


Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner 2023 William & Mary

Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner

Undergraduate Honors Theses

This thesis describes the work done to improve an external cavity diode laser. These improvements consisted of constructing an insulated housing to stabilize the temperature of the laser, tuning the proportional-integral-derivative feedback of the temperature controller, achieving resonance frequencies of rubidium, and implementing and optimizing feed-forward scanning of the frequency of the laser. The laser was then successfully used to measure the linewidth of another laser in the laboratory to better understand how that laser could be best used. The knowledge gained in this thesis can also be used to change the frequency of the laser to achieve other resonances …


Materials Characterization For Microwave Atom Chip Development, Jordan Shields 2023 William & Mary

Materials Characterization For Microwave Atom Chip Development, Jordan Shields

Undergraduate Honors Theses

This thesis describes research to characterize materials to be implemented on a microwave atom trap chip, which will be able to trap and spatially manipulate atoms using the spin-specific microwave AC Zeeman effect. Potential applications of this research include atom-based interferometry and quantum computing.

Namely, this thesis describes the characterization of the following: (1) the dielectric constant of a well-characterized substrate, Rogers RO4350B, in order to provide proof-of-concept for a method that can be applied to the chip’s substrate, aluminum nitride (AlN), (2) the maximum current that will be able to be applied to the chip, and (3) surface roughness …


Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell 2023 William & Mary

Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell

Undergraduate Honors Theses

An experiment was conducted at William & Mary to study how alkali polarization varies spatially in a spherical cell during the process of optical pumping. Similar cells are used to study the neutron via electron scattering from polarized 3He nuclei, and those experiments could be improved if alkali polarization is maximized and uniformly distributed throughout the cell. The results of this experiment indicate that the alkali polarization is non-uniform and more heavily concentrated on the side of the cell facing the pump laser.


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back 2023 Clemson University

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Digital Commons powered by bepress