Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

1,631 Full-Text Articles 2,056 Authors 994,183 Downloads 98 Institutions

All Articles in Signal Processing

Faceted Search

1,631 full-text articles. Page 6 of 59.

Evaluating Large Delay Estimation Techniques For Assisted Living Environments, Swarnadeep Bagchi, Ruairí de Fréin 2022 Technological University Dublin

Evaluating Large Delay Estimation Techniques For Assisted Living Environments, Swarnadeep Bagchi, Ruairí De Fréin

Articles

Abstract Phase wraparound due to large inter-sensor spacings in multi-channel demixing limits the range of relative delays that many time–frequency relative delay estimators can estimate. The performance of a large relative delay estimation method, called the elevatogram, is evaluated in the presence of significant phase wraparound. This paper compares the elevatogram with the popular relative delay estimator used in DUET and the brute-force approach in D-AdRess and analyses its computational efficiency. The elevatogram can accurately estimate relative delays of speech signals of up to 800 samples, whereas DUET and D-AdRess were limited to delays of 7 and 35 samples, given …


Height Information Aided 3d Real-Time Large-Scale Underground User Positioning, Houbing Song, Chengkai Tang, Cunle Zhang, Lingling Zhang, Yi Zhang 2022 Embry-Riddle Aeronautical University

Height Information Aided 3d Real-Time Large-Scale Underground User Positioning, Houbing Song, Chengkai Tang, Cunle Zhang, Lingling Zhang, Yi Zhang

Publications

Due to the cost of inertial navigation and visual navigation equipment and lake of satellite navigation signals, they cannot be used in large‐scale underground mining environment. To solve this problem, this study proposes large‐scale underground 3D real‐time positioning method with seam height assistance. This method uses the ultrawide band positioning base station as the core and is combined with seam height information to build a factor graph confidence transfer model to realise3D positioning. The simulation results show that the proposed real‐time method is superior to the existing algorithms in positioning accuracy and can meet the needs of large‐scale underground users.


Distribution Of Dds-Cerberus Authenticated Facial Recognition Streams, Andrew T. Park, Nathaniel Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry 2022 Air Force Institute of Technology

Distribution Of Dds-Cerberus Authenticated Facial Recognition Streams, Andrew T. Park, Nathaniel Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry

Faculty Publications

Successful missions in the field often rely upon communication technologies for tactics and coordination. One middleware used in securing these communication channels is Data Distribution Service (DDS) which employs a publish-subscribe model. However, researchers have found several security vulnerabilities in DDS implementations. DDS-Cerberus (DDS-C) is a security layer implemented into DDS to mitigate impersonation attacks using Kerberos authentication and ticketing. Even with the addition of DDS-C, the real-time message sending of DDS also needs to be upheld. This paper extends our previous work to analyze DDS-C’s impact on performance in a use case implementation. The use case covers an artificial …


An Empirical Comparison Of The Security And Performance Characteristics Of Topology Formation Algorithms For Bitcoin Networks, Muntadher Sallal, Ruairí de Fréin, Ali Malik, Benjamin Aziz 2022 University of Bournemouth

An Empirical Comparison Of The Security And Performance Characteristics Of Topology Formation Algorithms For Bitcoin Networks, Muntadher Sallal, Ruairí De Fréin, Ali Malik, Benjamin Aziz

Articles

There is an increasing demand for digital crypto-currencies to be more secure and robust to meet the following business requirements: (1) low transaction fees and (2) the privacy of users. Nowadays, Bitcoin is gaining traction and wide adoption. Many well-known businesses have begun accepting bitcoins as a means of making financial payments. However, the susceptibility of Bitcoin networks to information propagation delay, increases the vulnerability to attack of the Bitcoin network, and decreases its throughput performance. This paper introduces and critically analyses new network clustering methods, named Locality Based Clustering (LBC), Ping Time Based Approach (PTBC), Super Node Based Clustering …


Acoustic Source Localization Using Straight Line Approximations, Swarnadeep Bagchi, Ruairí de Fréin 2022 Technological University Dublin

Acoustic Source Localization Using Straight Line Approximations, Swarnadeep Bagchi, Ruairí De Fréin

Conference papers

The short paper extends an acoustic signal delay estimation method to general anechoic scenario using image processing techniques. The technique proposed in this paper localizes acoustic speech sources by creating a matrix of phase versus frequency histograms, where the same phases are stacked in appropriate bins. With larger delays and multiple sources coexisting in the same matrix, it becomes cluttered with activated bins. This results in high intensity spots on the spectrogram, making source discrimination difficult. In this paper, we have employed morphological filtering, chain-coding and straight line approximations to ignore noise and enhance the target signal features. Lastly, Hough …


Efficient Discovery And Utilization Of Radio Information In Ultra-Dense Heterogeneous 3d Wireless Networks, Mattaka Gamage Samantha Sriyananda 2022 The University of Western Ontario

Efficient Discovery And Utilization Of Radio Information In Ultra-Dense Heterogeneous 3d Wireless Networks, Mattaka Gamage Samantha Sriyananda

Electronic Thesis and Dissertation Repository

Emergence of new applications, industrial automation and the explosive boost of smart concepts have led to an environment with rapidly increasing device densification and service diversification. This revolutionary upward trend has led the upcoming 6th-Generation (6G) and beyond communication systems to be globally available communication, computing and intelligent systems seamlessly connecting devices, services and infrastructure facilities. In this kind of environment, scarcity of radio resources would be upshot to an unimaginably high level compelling them to be very efficiently utilized. In this case, timely action is taken to deviate from approximate site-specific 2-Dimensional (2D) network concepts in radio resource utilization …


The Development Of A Motion Sensing Device For Use In A Home Setting, Jaspreet K. Kalsi 2022 The University of Western Ontario

The Development Of A Motion Sensing Device For Use In A Home Setting, Jaspreet K. Kalsi

Electronic Thesis and Dissertation Repository

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, with over 10 million individuals diagnosed with PD world-wide. The most common symptom characterized by PD is tremor. Tremor is an involuntary oscillatory motion that most prominently occurs in upper limb, specifically in the hand and wrist that has a measurable frequency and amplitude. This thesis aims to evaluate the usability and functionality of a tremor sensing device designed to collect quantitative data on individuals with PD. The designed device uses 23 commercially-available inertial measuring units (IMUs) located between 21 joints: distal interphalangeal (DIP) joints, proximal interphalangeal (PIP) joints, Interphalangeal …


Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai 2022 University of Tennessee, Knoxville

Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai

Doctoral Dissertations

Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 …


Hybrid Smart Transformer For Enhanced Power System Protection Against Dc With Advanced Grid Support, Moazzam Nazir 2022 Clemson University

Hybrid Smart Transformer For Enhanced Power System Protection Against Dc With Advanced Grid Support, Moazzam Nazir

All Dissertations

The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired …


Deep Learning Based Localization Of Zigbee Interference Sources Using Channel State Information, Dylan Kensler 2022 Clemson University

Deep Learning Based Localization Of Zigbee Interference Sources Using Channel State Information, Dylan Kensler

All Theses

As the field of Internet of Things (IoT) continues to grow, a variety of wireless signals fill the ambient wireless environment. These signals are used for communication, however, recently wireless sensing has been studied, in which these signals can be used to gather information about the surrounding space. With the development of 802.11n, a newer standard of WiFi, more complex information is available about the environment a signal propagates through. This information called Channel State Information (CSI) can be used in wireless sensing. With the help of Deep Learning, this work attempts to generate a fingerprinting technique for localizing a …


Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray 2022 Old Dominion University

Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray

Electrical & Computer Engineering Theses & Dissertations

Affective computing is an exciting and transformative field that is gaining in popularity among psychologists, statisticians, and computer scientists. The ability of a machine to infer human emotion and mood, i.e. affective states, has the potential to greatly improve human-machine interaction in our increasingly digital world. In this work, an ensemble model methodology for detecting human emotions across multiple subjects is outlined. The Continuously Annotated Signals of Emotion (CASE) dataset, which is a dataset of physiological signals labeled with discrete emotions from video stimuli as well as subject-reported continuous emotions, arousal and valence, from the circumplex model, is used for …


Computational Models To Detect Radiation In Urban Environments: An Application Of Signal Processing Techniques And Neural Networks To Radiation Data Analysis, Jose Nicolas Gachancipa 2022 Student

Computational Models To Detect Radiation In Urban Environments: An Application Of Signal Processing Techniques And Neural Networks To Radiation Data Analysis, Jose Nicolas Gachancipa

Beyond: Undergraduate Research Journal

Radioactive sources, such as uranium-235, are nuclides that emit ionizing radiation, and which can be used to build nuclear weapons. In public areas, the presence of a radioactive nuclide can present a risk to the population, and therefore, it is imperative that threats are identified by radiological search and response teams in a timely and effective manner. In urban environments, such as densely populated cities, radioactive sources may be more difficult to detect, since background radiation produced by surrounding objects and structures (e.g., buildings, cars) can hinder the effective detection of unnatural radioactive material. This article presents a computational model …


Credit Card Fraud Detection Using Machine Learning Techniques, Nermin Samy Elhusseny, shimaa mohamed ouf, Amira M. Idrees AMI 2022 BIS Helwan University

Credit Card Fraud Detection Using Machine Learning Techniques, Nermin Samy Elhusseny, Shimaa Mohamed Ouf, Amira M. Idrees Ami

Future Computing and Informatics Journal

This is a systematic literature review to reflect the previous studies that dealt with credit card fraud detection and highlight the different machine learning techniques to deal with this problem. Credit cards are now widely utilized daily. The globe has just begun to shift toward financial inclusion, with marginalized people being introduced to the financial sector. As a result of the high volume of e-commerce, there has been a significant increase in credit card fraud. One of the most important parts of today's banking sector is fraud detection. Fraud is one of the most serious concerns in terms of monetary …


A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt 2022 Air Force Institute of Technology

A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt

Faculty Publications

Navigation using a Global Navigation Satellite System (GNSS) is common for autonomous vehicles (ground or air). Unfortunately, GNSS-based navigation solutions are often susceptible to jamming, interference, and a limited number of satellites. A proposed technique to aid in navigation when a GNSS-based system fails is magnetic navigation - navigation using the Earth's magnetic anomaly field. This solution comes with its own set of problems including the need for quality magnetic maps in every area in which magnetic navigation will be used. Many of the currently available magnetic maps are generated from a combination of dated magnetic surveys, resulting in maps …


Soft-Mask De-Mixing For Anechoic Mixtures, Swarnadeep Bagchi, Ruairí de Fréin 2022 Technological University Dublin

Soft-Mask De-Mixing For Anechoic Mixtures, Swarnadeep Bagchi, Ruairí De Fréin

Articles

This paper extends a computationally efficient, soft-mask based source separation (SS) technique called Redress, to anechoic mixing scenarios. SS methods are an integral part of hearing aid research. We call the resulting method D-Redress. In its original form, Redress was intended for instantaneous mixing scenarios. Numerical evaluations demonstrate that soft-mask based techniques reduce the level of artifacts in the separated speech. Monte Carlo trials on 1000 real speech mixtures demonstrate that the D-Redress successfully extends Redress in terms of Overall-Perceptual (OPS), Target-Perceptual (TPS) scores and Human-Ear Intelligibility (HEI).


Signal Adc Converter Simulation On Cadence Virtuoso For Audio Applications, Maxwell Kazuki Fukada 2022 California Polytechnic State University, San Luis Obispo

Signal Adc Converter Simulation On Cadence Virtuoso For Audio Applications, Maxwell Kazuki Fukada

Electrical Engineering

Audio signals are representations of sounds with a mixture of multiple analog signals between the frequency of 20Hz to 20,000Hz. To record snippets of audio data onto a mobile phone or computer, the signal needs to be converted to a digital format. For this purpose, many devices utilize a converter, specifically a sigma-delta modulator with a digital filter. By using a converter, electronics can receive binary data about the audio signal accurately and quickly without losing important signal information. This project aims to simulate a fully functional audio converter with a sigma-delta modulator and decimation filter. The system will receive …


Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier 2022 California Polytechnic State University, San Luis Obispo

Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier

Architectural Engineering

The authors of this report are Architectural Engineering undergraduate students at California Polytechnic State University, San Luis Obispo. Damping is a complex, experimentally derived value that is affected by many structural properties and has a profound effect on the dynamic response of structures. Deducing the inherent damping of a steel moment frame and affecting the damping ratio with viscous dampers are two topics explored in this paper. Dampers are commonly implemented in resilient structures that perform better in a design basis earthquake, reducing the seismic cost and downtime. Undergraduate coursework does not delve into the factors that affect damping and …


Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer 2022 Air Force Institute of Technology

Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer

Theses and Dissertations

The infrared (IR) imaging community has a need for direct IR detector evaluation due to the continued demand for small pixel pitch detectors, the emergence of strained-layer-super-lattice devices, and the associated lateral carrier diffusion issues. Conventional laser speckle-based modulation transfer function (MTF) estimation is dependent on Fresnel propagation and a wide-sense-stationary input random process, limiting the use of this approach for lambda (wavelength)-scale IR devices. This dissertation develops two alternative methodologies for speckle-based resolution evaluation of IR focal plane arrays (FPAs). Both techniques are formulated using Rayleigh-Sommerfield electric field propagation, making them valid in the non-paraxial geometries dictated for resolution …


Theory And Design Of A Highly Compressed Dropped-Channel Polarimetric Synthetic Aperture Radar, John T. Becker 2022 Air Force Institute of Technology

Theory And Design Of A Highly Compressed Dropped-Channel Polarimetric Synthetic Aperture Radar, John T. Becker

Theses and Dissertations

Compressed sensing (CS) is a recent mathematical technique that leverages the sparsity in certain sets of data to solve an underdetermined system and recover a full set of data from a sub-Nyquist set of measurements of the data. Given the size and sparsity of the data, radar has been a natural choice to apply compressed sensing to, typically in the fast-time and slow-time domains. Polarimetric synthetic aperture radar (PolSAR) generates a particularly large amount of data for a given scene; however, the data tends to be sparse. Recently a technique was developed to recover a dropped PolSAR channel by leveraging …


Effects Of Motion Measurement Errors On Radar Target Detection, Darnell D. Parker 2022 Air Force Institute of Technology

Effects Of Motion Measurement Errors On Radar Target Detection, Darnell D. Parker

Theses and Dissertations

This thesis investigates the relationships present between signal-to-clutter ratios, motion measurement errors, image quality metrics, and the task of target detection, in order to discover what factor merit greater focus in order to attain the highest probability of target detection success. This investigation is accomplished by running a high number of Monte Carlo trials through a coherent target detector and analyzing the results. The aforementioned relationships are demonstrated via sample synthetic aperture radar imagery, histograms, receiver operating characteristics curves, and error bar plots.


Digital Commons powered by bepress