Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

1,643 Full-Text Articles 2,068 Authors 994,183 Downloads 98 Institutions

All Articles in Signal Processing

Faceted Search

1,643 full-text articles. Page 2 of 60.

Energy Efficiency And Fault Tolerance In Open Ran And Future Internet, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma 2023 Technological University Dublin

Energy Efficiency And Fault Tolerance In Open Ran And Future Internet, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma

Conference papers

Open Radio Access Networks (Open RAN) repre- sent a promising technological advancement within the realm of the future internet. Research efforts are currently directed towards enhancing energy efficiency and fault tolerance, which are critical aspects for both Open RAN and the future internet landscape. In the context of energy saving in Open RAN, there exists a spectrum of methods for achieving energy efficiency. These methods include the toggling of on/off states for different hardware resources such as base station units, distributed units, and radio units. Conversely, for enhancing fault tolerance in Open RAN, Software-Defined Networking (SDN) and OpenFlow based techniques …


Improving Energy Efficiency In Open Ran Through Dynamic Cpu Scheduling, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma 2023 Technological University Dublin

Improving Energy Efficiency In Open Ran Through Dynamic Cpu Scheduling, Saish Urumkar, Byrav Ramamurthy, Sachin Sharma

Conference papers

Open RAN is a promising cellular technology that is currently undergoing extensive research for future wireless radio access networks. Achieving optimal energy efficiency in Open RAN poses a significant challenge. This paper introduces a CPU scheduling algorithm that specifically targets this chal- lenge by optimizing energy consumption at the base station while maintaining optimal performance levels. With the goal of minimizing energy consumption, the proposed algorithm dynamically adjusts the CPU core states, seamlessly switching between active and sleep modes based on the load conditions. To evaluate the algorithm’s effectiveness in terms of energy saving and performance, experimental testing is conducted …


Design And Fabrication Of A Low Power 7.2 Terabit Transmitter For Exascale Computing, Scott McWilliams 2023 Southern Methodist University

Design And Fabrication Of A Low Power 7.2 Terabit Transmitter For Exascale Computing, Scott Mcwilliams

Electrical Engineering Theses and Dissertations

Enhanced Coupled Strength (ECS) gratings fabricated into III-V based devices offer high reflected power per unit length and broad band reflectivity as compared to conventional 1st order gratings, desired qualities for short-haul high speed transmitters that can be implemented without the need for chip-level temperature control, contributing to the low power per transmitted bit. For commercial DBR lasers, the grating reflectivity results in an extremely narrow reflectivity spectrum, which is highly desired for most/many applications, but requires a power hungry thermo-electric cooler to maintain a fixed frequency. The proposed LEAM (laser electro-absorption modulator) requires a broad reflectivity spectrum, which, by …


Traffic Light Detection And V2i Communications Of An Autonomous Vehicle With The Traffic Light For An Effective Intersection Navigation Using Mavs Simulation, Mahfuzur Rahman 2023 Mississippi State University

Traffic Light Detection And V2i Communications Of An Autonomous Vehicle With The Traffic Light For An Effective Intersection Navigation Using Mavs Simulation, Mahfuzur Rahman

Theses and Dissertations

Intersection Navigation plays a significant role in autonomous vehicle operation. This paper focuses on enhancing autonomous vehicle intersection navigation through advanced computer vision and Vehicle-to-Infrastructure (V2I) communication systems. The research unfolds in two phases. In the first phase, an approach utilizing YOLOv8s is proposed for precise traffic light detection and recognition, trained on the Small-Scale Traffic Light Dataset (S2TLD). The second phase establishes seamless connectivity between autonomous vehicles and traffic lights in a simulated Mississippi State University Autonomous Vehicle Simulation (MAVS) environment resembling a small city with multiple intersections. This V2I system enables the transmission of Signal Phase and Timing …


Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers II 2023 Mississippi State University

Neural Networks For Improved Signal Source Enumeration And Localization With Unsteered Antenna Arrays, John T. Rogers Ii

Theses and Dissertations

Direction of Arrival estimation using unsteered antenna arrays, unlike mechanically scanned or phased arrays, requires complex algorithms which perform poorly with small aperture arrays or without a large number of observations, or snapshots. In general, these algorithms compute a sample covriance matrix to obtain the direction of arrival and some require a prior estimate of the number of signal sources. Herein, artificial neural network architectures are proposed which demonstrate improved estimation of the number of signal sources, the true signal covariance matrix, and the direction of arrival. The proposed number of source estimation network demonstrates robust performance in the case …


Ism-Band Energy Harvesting Wireless Sensor Node, FNU Naveed 2023 University of Arkansas-Fayetteville

Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed

Graduate Theses and Dissertations

In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate …


Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz 2023 University of Nebraska-Lincoln

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad 2023 Florida Institute of Technology

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Analog Cancellation Of A Known Remote Interference: Hardware Realization And Analysis, James M. Doty 2023 University of Massachusetts Amherst

Analog Cancellation Of A Known Remote Interference: Hardware Realization And Analysis, James M. Doty

Masters Theses

The onset of quantum computing threatens commonly used schemes for information secrecy across wireless communication channels, particularly key-based data-level encryption. This calls for secrecy schemes that can provide everlasting secrecy resistant to increased computational power of an adversary. One novel physical layer scheme proposes that an intended receiver capable of performing analog cancellation of a known key-based interference would hold a significant advantage in recovering small underlying messages versus an eavesdropper performing cancellation after analog-to-digital conversion. This advantage holds even in the event that an eavesdropper can recover and use the original key in their digital cancellation. Inspired by this …


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers 2023 University of Arizona

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Study Of Improved Sorting Weighting Cfar Detectors For Gaussian Environment, Souad Chabbi, khadidja belhi, M'HAMED HAMADOUCHE 2023 Frères Mentouri University, Constantine, Algeria

Study Of Improved Sorting Weighting Cfar Detectors For Gaussian Environment, Souad Chabbi, Khadidja Belhi, M'Hamed Hamadouche

Emirates Journal for Engineering Research

The goal of this paper is to improve the detection performance and the false alarm regulation of the conventional order statistics Constant False Alarm Rate (OS-CFAR) detectors in a non-homogeneous Gaussian environment. To this end, we design and study the New Sorting Weighting (NSW-) and the Modified Sorting Weighting (MSW-) CFAR detectors. We find closed forms of the detection ( ) and the false alarm ( ) probabilities for both detectors. Moreover, we identify the optimum pairs of weights that maximize the and ensure a constant . Finally, we prove through Monte Carlo simulations that these detectors provide better detection …


Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor 2023 California Institute of Technology

Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor

Faculty Publications

To understand the error sources present in inertial sensors, both the white (time-invariant) and correlated noise sources must be properly characterized. To understand both sources, the standard approach (IEEE standards 647-2006, 952-2020) is to compute the Allan variance of the noise and then use human-based interpretation of linear trends to estimate the separate noise sources present in a sensor. Recent work has sought to overcome the graphical nature and visual-inspection basis of this approach leading to more accurate noise estimates. However, when using noise characterization in a filter, it is important that the noise estimates be not only accurate but …


Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook 2023 Embry-Riddle Aeronautical University

Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook

Doctoral Dissertations and Master's Theses

With recent advances in machine learning and deep learning technologies and the creation of larger aviation-specific corpora, applying natural language processing technologies, especially those based on transformer neural networks, to aviation communications is becoming increasingly feasible. Previous work has focused on machine learning applications to natural language processing, such as N-grams and word lattices. This thesis experiments with a process for pretraining transformer-based language models on aviation English corpora and compare the effectiveness and performance of language models transfer learned from pretrained checkpoints and those trained from their base weight initializations (trained from scratch). The results suggest that transformer language …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman 2023 Brigham Young University

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Exploring The Use Of Audible Sound In Bone Density Diagnostic Devices, Evan J. Bess 2023 The University of Maine

Exploring The Use Of Audible Sound In Bone Density Diagnostic Devices, Evan J. Bess

Electronic Theses and Dissertations

Osteoporosis is a medical condition in which there is a progressive degradation of bone tissue that correlates with a characteristic decrease in bone density (BD). It is estimated that osteoporosis affects over 200 million people globally and is responsible for 8.9 million fractures annually. Populations at risk for developing osteoporosis include post-menopausal women, diabetic patients, and the elderly, representing a large population within the state of Maine. Current densitometric and sonometric devices used to monitor BD include quantitative computed tomography (QCT), dual-energy x-ray absorption (DXA), and ultrasound (QUS). All methods are expensive and, in the cases of QCT and DXA, …


Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon 2023 Western University

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng 2023 Washington University in St. Louis

Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng

McKelvey School of Engineering Theses & Dissertations

The synchronization of the clocks used at different devices across space is of critical importance in wireless communications networks. Each device’s local clock differs slightly, affecting the times at which packets are transmitted from different nodes in the network. This thesis provides experimentation and software development on POWDER, the Platform for Open, Wireless Data-driven Experimental Research, an open wireless testbed across the University of Utah campus. We build upon Shout, a suite of Python scripts that allow devices to iteratively transmit and receive with each other and save the collected data. We introduce WATCH, an experimental method to estimate clock …


Fingerprinting For Chiplet Architectures Using Power Distribution Network Transients, Matthew G. Burke 2023 University of Massachusetts Amherst

Fingerprinting For Chiplet Architectures Using Power Distribution Network Transients, Matthew G. Burke

Masters Theses

Chiplets have become an increasingly popular technology for extending Moore's Law and improving the reliability of integrated circuits. They do this by placing several small, interacting chips on an interposer rather than the traditional, single chip used for a device. Like any other type of integrated circuit, chiplets are in need of a physical layer of security to defend against hardware Trojans, counterfeiting, probing, and other methods of tampering and physical attacks.

Power distribution networks are ubiquitous across chiplet and monolithic ICs, and are essential to the function of the device. Thus, we propose a method of fingerprinting transient signals …


Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd 2023 Mississippi State University

Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd

Theses and Dissertations

The potential for high spatio-temporal resolution microwave measurements has urged the adoption of the signals of opportunity (SoOp) passive radar technique for use in remote sensing. Recent trends in particular target highly complex remote sensing problems such as root-zone soil moisture and snow water equivalent. This dissertation explores the continued open-sourcing of the SoOp coherent bistatic scattering model (SCoBi) and its use in soil moisture sensing applications. Starting from ground-based applications, the feasibility of root-zone soil moisture remote sensing is assessed using available SoOp resources below L-band. A modularized, spaceborne model is then developed to simulate land-surface scattering and delay-Doppler …


Cyberinet: Integrated Semi-Modular Sensors For The Computer-Augmented Clarinet, Matthew Bardin 2023 Louisiana State University

Cyberinet: Integrated Semi-Modular Sensors For The Computer-Augmented Clarinet, Matthew Bardin

LSU Doctoral Dissertations

The Cyberinet is a new Augmented instrument designed to easily and intuitively provide a method of computer-enhanced performance to the Clarinetist to allow for greater control and expressiveness in a performance. A performer utilizing the Cyberinet is able to seamlessly switch between a traditional performance setting and an augmented one. Towards this, the Cyberinet is a hardware replacement for a portion of a Clarinet containing a variety of sensors embedded within the unit. These sensors collect various real time data motion data of the performer and air fow within the instrument. Additional sensors can be connected to the Cyberinet to …


Digital Commons powered by bepress