Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

1418 Full-Text Articles 3289 Authors 89833 Downloads 51 Institutions

All Articles in Atmospheric Sciences

Faceted Search

1418 full-text articles. Page 1 of 41.

Analysis Of Aerosol Absorption Properties And Transport Over North Africa And The Middle East Using Aeronet Data, Ashraf Farahat, Hesham el-Askary, Peter Adetokunbo, Abu-Tharr Fuad 2016 King Fahd University of Petroleum and Minerals, Saudi Arabia

Analysis Of Aerosol Absorption Properties And Transport Over North Africa And The Middle East Using Aeronet Data, Ashraf Farahat, Hesham El-Askary, Peter Adetokunbo, Abu-Tharr Fuad

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper particle categorization and absorption properties were discussed to understand transport mechanisms at different geographic locations and possible radiative impacts on climate. The long-term Aerosol Robotic Network (AERONET) data set (1999–2015) is used to estimate aerosol optical depth (AOD), single scattering albedo (SSA), and the absorption Ångström exponent (abs) at eight locations in North Africa and the Middle East. Average variation in SSA is calculated at four wavelengths (440, 675, 870, and 1020 nm), and the relationship between aerosol absorption and physical properties is used to infer dominant aerosol types at different locations. It was found that ...


Multiscale Wind Modelling For Sustainability And Resilience, Djordje Romanic 2016 The University of Western Ontario

Multiscale Wind Modelling For Sustainability And Resilience, Djordje Romanic

Electronic Thesis and Dissertation Repository

The research presented herein is a mix of meteorological and wind engineering disciplines. In many cases, there is a gap between these two fields and this thesis is an attempt to bridge that gap through multiscale wind modelling approaches. Data and methods used in this study cover a multitude of spatial and temporal scales. Applications are in the fields of sustainability and resilience. This relationship between multiscale wind modelling and sustainability and resilience is investigated examining several case studies of three different developments: urban, rural and coastal.

An urban wind modelling methodology is proposed and applied for a specific development ...


Breakdown Of Itcz-Like Pv Patterns, Ajay Raghavendra, Thomas A. Guinn 2016 Embry-Riddle Aeronautical University - Daytona Beach

Breakdown Of Itcz-Like Pv Patterns, Ajay Raghavendra, Thomas A. Guinn

Beyond: Undergraduate Research Journal

The Inter-Tropical Convergence Zone (ITCZ) is a zonal belt of intense convection, responsible for the genesis of over 80% of all tropical cyclones. This region of intense diabatic heating and shear results in a maximum of Ertel's potential vorticity (PV) meeting Rayleigh's necessary condition for barotropic instability. A fundamental issue is understanding the necessary precursor events leading to the breakdown of the ITCZ and subsequent formation of tropical cyclones. Our research examines the non-linear PV dynamics of the breakdown of both finite-length and infinite-length vorticity strips of varying widths and shapes, simulating the ITCZ found near the tropical ...


Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Beverly E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker 2016 University of New Hampshire, Durham

Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Beverly E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker

Xiaoyang Zhang

The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth’s climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale eddy covariance flux observations from towers to the continental scale by integrating flux observations, meteorology, stand age,aboveground biomass, and a proxy for canopy nitrogen concentrations from AmeriFlux and Fluxnet-Canada Research Network as well as a variety of satellite data streams from the ...


Near-Real-Time Global Biomass Burning Emissions Product From Geostationary Satellite Constellation, Xiaoyang Zhang, Shobha Kondragunta, Jessica Ram, Christopher Schmidt, Ho-Chung Huang 2016 South Dakota State University

Near-Real-Time Global Biomass Burning Emissions Product From Geostationary Satellite Constellation, Xiaoyang Zhang, Shobha Kondragunta, Jessica Ram, Christopher Schmidt, Ho-Chung Huang

Xiaoyang Zhang

Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport ...


Exploring The Edge Of Space: Streamlining Physics And Earth Science Collaboration In A New Community College Course, David Kobilka, Yoshinao Hirai Ph.D. 2016 Central Lakes College - Brainerd

Exploring The Edge Of Space: Streamlining Physics And Earth Science Collaboration In A New Community College Course, David Kobilka, Yoshinao Hirai Ph.D.

2016 Academic High Altitude Conference

We designed a new lab science course on stratospheric ballooning (SB), titled Exploring the Edge of Space. The course, which starts in the upcoming semester, brings together two groups of students simultaneously: Mainstream liberal arts students and students in the college’s Honors program. The Honors students meet an additional hour weekly, review scientific literature extensively, and complete a capstone project. The course design is a collaboration between the physics and earth science departments at Central Lakes College, and is drawn on the five-year experience of the authors doing SB flights, many in collaboration with the Bemidji State University SB ...


Development Of A "Multi-Cut" Payload For Use In Stratospheric Ballooning Missions, James Flaten, Joey Habeck, Noah Biniek, Steven Smeaton, Austin Langford, Jordan Diers, Isaac Krieger 2016 U of MN - Twin Cities / MN Space Grant

Development Of A "Multi-Cut" Payload For Use In Stratospheric Ballooning Missions, James Flaten, Joey Habeck, Noah Biniek, Steven Smeaton, Austin Langford, Jordan Diers, Isaac Krieger

2016 Academic High Altitude Conference

The ability to cut strings (AKA lines) during stratospheric ballooning missions has a wide variety of uses including, but not limited to, (a) flight termination (i.e. cutting payloads away from the main balloon), (b) cutting away excess lift balloon(s) to slow ascent rate (and possibly achieve float), (c) cutting away ballast weights to slow descent rate or increase ascent rate, (d) cutting away burst balloon(s) on descent to avoid parachute entanglement, and (e) cutting away payloads which are intended to return to the ground independently, for experimental purposes. We report on the development of a “multi-cut” payload ...


Analyzing Accuracy Of The Lufft Ws600 In Remotely Measuring Precipitation Events, Justin Gay 2016 University of Vermont

Analyzing Accuracy Of The Lufft Ws600 In Remotely Measuring Precipitation Events, Justin Gay

STAR (STEM Teacher and Researcher) Presentations

The goal of this project was to analyze the accuracy of the Lufft WS600 Weather Sensor in measuring the rate of both liquid and solid precipitation. Measurement accuracy, especially in remote locations, can be difficult to obtain and quantify. Wind, blowing debris, and atmospheric particles can all have the capacity to interfere with instruments that are not being continuously compared to manual observations. Access to quality precipitation data sets are important for both hydrologic and weather forecasting, climate monitoring, and understanding the role of water cycling through ecosystems. Commercially, weather sensors are heavily relied upon by the Federal Aviation Administration ...


Analysis Of The Run-To-Run Variability Within The Namm Forecasts For The Northeast U.S. Blizzard Of 8-9 February 2013, Kaitlyn Heinlein 2016 University of Wisconsin-Milwaukee

Analysis Of The Run-To-Run Variability Within The Namm Forecasts For The Northeast U.S. Blizzard Of 8-9 February 2013, Kaitlyn Heinlein

Theses and Dissertations

On 8-9 February 2013, a strong extratropical cyclone brought historic winter storm conditions to the Northeast United States with a swath of one to three feet of snow falling across much of New England, with isolated pockets exceeding three feet across south-central Connecticut. Given the high socioeconomic impact that resulted from this blizzard, this study focuses on the run-to-run variability in operational model (North American Mesoscale model; NAM) forecasts leading up to the event. These forecasts, initialized forty-eight hours or less from the start of the event, showed two instances indicating a substantial shift in the expected impact. The first ...


Determining The Viability Of Recent Storms As Modern Analogues For North-Central Gulf Of Mexico Paleotempestology Through Sedimentary Analysis And Storm Surge Reconstruction, Joshua Caleb Bregy 2016 University of Southern Mississippi

Determining The Viability Of Recent Storms As Modern Analogues For North-Central Gulf Of Mexico Paleotempestology Through Sedimentary Analysis And Storm Surge Reconstruction, Joshua Caleb Bregy

Master's Theses

The northern Gulf of Mexico has been devastated by recent intense storms. Camille (1969) and Katrina (2005) are two notable hurricanes that made landfall in virtually the same location in Mississippi. However, fully understanding the risks and processes associated with hurricane impacts is impeded by a short and fragmented instrumental record. Paleotempestology could potentially use modern analogues from intense storms in this region to extend the hurricane record back to pre-observational time. Existing empirically based models can back-calculate surge heights over coastal systems as a function of transport distance, particle settling velocity, and gravitational acceleration. We collected cores in a ...


Wind Climatology: A Study Of Trends On Rodgers' Dry Lakebed, Dana Coppernoll-Houston 2016 University of Portland

Wind Climatology: A Study Of Trends On Rodgers' Dry Lakebed, Dana Coppernoll-Houston

STAR (STEM Teacher and Researcher) Presentations

A number of smaller projects at the Armstrong Flight Research Center fly on or close to the ground and are subject to ground-level winds. Many of these are new prototype models, such as PRANDTL-D (Preliminary Research Aerodynamic Design to Lower Drag). Waiting for the right conditions on a day of variable winds can sometimes mean that teams fail to complete testing. A strategic analysis of wind behavior at a locations where winds can vary greatly due to terrain could lend insight into the best times to test for near-ground aircraft. The purpose of this project was to data mine historical ...


Total Water Level And Wave Run Up Forecast, Eric Seymour 2016 National Weather Service

Total Water Level And Wave Run Up Forecast, Eric Seymour

July 29, 2016: The Latest in Sea Level Rise Science

No abstract provided.


Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. McMurry, James N. Smith, Jeffery R. Pierce 2016 Colorado State University - Fort Collins

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids ...


Decomposition Of Atmospheric Aerosol Phase Function By Particle Size And Morphology Via Single Particle Scattering Measurements, Kevin B. Aptowicz, Jacqueline Sugar, Sean D. Martin, Richard K. Chang, Elena Fernandez, Yong-le Pan, Ronald G. Pinnick 2016 West Chester University of Pennsylvania

Decomposition Of Atmospheric Aerosol Phase Function By Particle Size And Morphology Via Single Particle Scattering Measurements, Kevin B. Aptowicz, Jacqueline Sugar, Sean D. Martin, Richard K. Chang, Elena Fernandez, Yong-Le Pan, Ronald G. Pinnick

Kevin Aptowicz

No abstract provided.


Reducing Pollen Dispersal Using Forest Windbreaks, Carol Auer, Thomas Meyer, Vernie Sagun 2016 University of Connecticut - Storrs

Reducing Pollen Dispersal Using Forest Windbreaks, Carol Auer, Thomas Meyer, Vernie Sagun

Plant Science Articles

The adoption of genetically engineered (GE) crops has created a demand for practical methods to mitigate pollen dispersal and gene flow. The goal of this project was to measure the ability of a narrow forest windbreak to reduce downwind pollen fluxes from switchgrass (Panicum virgatum L.), a North American grass and model biofuels feedstock. Switchgrass fields were established in two identical plots where one had a forest windbreak and the other was in an open (control) site. Switchgrass reproduction, pollen dispersal, wind speed, and wind direction were measured over two years. Daily release of switchgrass pollen peaked at 11:00-13 ...


Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo 2016 DePaul University

Using A High-Altitude Balloon Platform To Observe And Measure Ozone Uptake Over Agricultural Landscapes In Central Illinois, Cody Sabo

DePaul Discoveries

An increase in the amount of factories and machines that emit greenhouse gases (GHGs) has caused the concentration of GHGs to rise steeply since the industrial era. These emissions create compounds that react with sunlight to form ozone, a GHG. Ozone not only traps heat in the atmosphere causing long-term global issues, but it also causes direct harm to both plants and animals. The damage that ozone causes to plants is due to plants taking the gas up through their stomata. Measuring ozone uptake has traditionally been a difficult and expensive process. This study proposes a novel approach towards measuring ...


Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole 2016 DePaul University

Combinatory Effect Of Changing Co2, Temperature, And Long-Term Growth Temperature On Isoprene Emissions, Michael Cole

DePaul Discoveries

Isoprene, the most abundant hydrocarbon in the atmosphere, plays a significant role in atmospheric chemistry. Its reactions with NOx lead to the formation of ozone in the lower troposphere, which is harmful to plants and detrimental to human health. As air temperatures and CO2 concentrations increase with climate change, it is uncertain how isoprene emissions from plants will respond. We hypothesized that isoprene emissions will increase with the combination of increasing temperature and CO­2 concentrations. We predict that oaks grown at a higher temperature will exhibit an increase in isoprene emissions with combined short-term increases in temperature ...


The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez 2016 DePaul University

The Correlation Between Basal Isoprene Emissions And Climate Of The Native Range Across Oak Species, Mary J. Babiez

DePaul Discoveries

Isoprene is a biogenic volatile organic compound that is emitted by various plant species and plays an important role in the chemistry of the atmosphere. When it reacts with pollutants in the air, such as nitrogen oxides, the precursor to ozone (O3) is formed. In this experiment, we measured leaf emissions from 20 different oak species at the Morton Arboretum (Lisle, Illinois). The aim was to better understand differences in isoprene emissions across oak species. Since emissions have been found to protect leaves against brief periods of heat stress, we hypothesized that oaks native to areas with greater variations ...


Low-Cost Hab Platform To Measure Particulate Matter In The Troposphere, Mark J. Potosnak, Bernhard Beck-Winchatz, Paul Ritter 2016 DePaul University

Low-Cost Hab Platform To Measure Particulate Matter In The Troposphere, Mark J. Potosnak, Bernhard Beck-Winchatz, Paul Ritter

2016 Academic High Altitude Conference

High-altitude balloons (HABs) are an engaging platform for formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere. In this poster presentation we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT and 900 MHz spread spectrum) that do not require a ...


Variations In Satellite Derived Sea Ice And Snow Coverage In The Arctic, Haylie N. Mikulak 2016 University of Nebraska - Lincoln

Variations In Satellite Derived Sea Ice And Snow Coverage In The Arctic, Haylie N. Mikulak

UCARE Research Products

The work is an investigation on the variations of satellite derived sea ice and snow cover extents in the Arctic region from 1979-2012. The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Hemisphere Snow and Ice Earth System Data Record is examined in order to find variations of Northern Hemispheric sea ice and snow cover extents and impacts each extent may have not only on one another as well as the changing atmospheric conditions over the study period. Extent patterns and extreme circumstances defined by this study are identified in order for future studies to examine ...


Digital Commons powered by bepress