Open Access. Powered by Scholars. Published by Universities.®

Atmospheric Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2,418 Full-Text Articles 5,697 Authors 437,171 Downloads 121 Institutions

All Articles in Atmospheric Sciences

Faceted Search

2,418 full-text articles. Page 3 of 95.

Atmospheric Impacts From The 2010 Deepwater Horizon Oil Spill, Charles Philip Johnson 2023 Louisiana State University and Agricultural and Mechanical College

Atmospheric Impacts From The 2010 Deepwater Horizon Oil Spill, Charles Philip Johnson

LSU Master's Theses

Although the ecological devastations induced by an oil spill are well studied, the hydrometeorological impacts from a long-term slick have gone unnoticed. The ocean-surface alterations stemming from the lasting oil footprint increase solar radiation absorption which in turn alters the surface pressure and moisture gradients and wind speeds thereby influencing precipitation surrounding the oil spill. Revealing the potential impacts from these could better aid in the safety of crews cleaning spills and provide a better understanding of how humans alter the landscape. This thesis examines the changes in local hydrometeorology brought on by the 2010 summer Deepwater Horizon (DWH) oil …


Radar Signatures In Tropical Cyclone Tornadic And Nontornadic Supercells, Michaela Wood 2023 University of Nebraska-Lincoln

Radar Signatures In Tropical Cyclone Tornadic And Nontornadic Supercells, Michaela Wood

Department of Earth and Atmospheric Sciences: Dissertations, Theses, and Student Research

Tropical cyclones (TCs) contain highly-sheared environments that are conducive for supercell thunderstorms. These TC supercells sometimes produce tornadoes, often with little warning. Given the often-close proximity of tornadic and nontornadic TC supercells, environments may not be well-distinguished, pointing to the potential value of radar observations. In this study, dual-polarimetric radar signatures of a sample of TC supercells are examined in the context of known supercell structure and microphysics. Tornadic and nontornadic TC supercells are compared with their midlatitude counterparts, and the environments and characteristic structure of these storms are shown to be notably different. An attempt is made to distinguish …


Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu 2023 Clemson University

Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu

All Dissertations

The Ionosphere-Thermosphere (I-T) system is greatly affected by the magnetospheric energy deposition from above and subjected to forcing from the lower atmosphere simultaneously. A central problem in studying the coupled I-T system is to analyze the multi-scale processes naturally embedded in both ways. Magnetospheric energy input such as auroral precipitation and electric field demonstrates multi-scale structures during magnetic storms, resulting in multi-scale I-T responses when deposited into the I-T system. To better quantify the multi-scale aurora and electric field, we developed a new data assimilation model based on a multi-resolution Gaussian process model to synthesize empirical models and observational data …


Probing The Structure Of Water On Surfaces: From Water Absorption To Ice Nucleation, Jiarun Zhou 2023 Clemson University

Probing The Structure Of Water On Surfaces: From Water Absorption To Ice Nucleation, Jiarun Zhou

All Dissertations

Water, essential for all life forms, is the most abundant, simple, yet mysterious molecule in the world. This molecule, consisting of only three atoms, behaves in unexpectedly different ways with the change of environment. In the past, studies of water under different conditions (temperature, pressure, on the surfaces, with confinement) have been conducted using experimental and computational methods. However, the influence of a given environment on water properties is yet to be fully understood. This dissertation studies water at complex interfaces (surfaces with various chemistry and physics properties) in both the liquid and crystalline states. Various heterogeneous systems used to …


Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron 2023 Old Dominion University

Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron

Physics Theses & Dissertations

Spectroscopy techniques are focused on spectra of molecules of interest to the Earth’s atmosphere and/or astronomy and astrophysics. Laboratory spectroscopy as well as remote satellite sensing are applied. Using the Fourier transform spectrometer aboard the Atmospheric Chemistry Experiment (ACE) satellite to measure the absorption spectra of the Earth’s atmosphere through solar occultation limb observation demonstrates that volcanic eruption plumes can be located and tracked through their SO2 content. The presence of those plumes is corroborated by overlaying infrared atmospheric aerosol extinction observed by the 1 μm imager on the same satellite. Tracking atmospheric aerosol movement with the ACE …


Cloud Microphysical Response To Entrainment And Mixing Is Locally Inhomogeneous And Globally Homogeneous: Evidence From The Lab, JaeMin Yeom, Ian Helman, Prasanth Prabhakaran, Jesse Anderson, Fan Yang, Raymond Shaw, Will Cantrell 2023 Michigan Technological University

Cloud Microphysical Response To Entrainment And Mixing Is Locally Inhomogeneous And Globally Homogeneous: Evidence From The Lab, Jaemin Yeom, Ian Helman, Prasanth Prabhakaran, Jesse Anderson, Fan Yang, Raymond Shaw, Will Cantrell

Michigan Tech Research Data

The effects of entrainment-mixing on the cloud droplet size distribution are examined in the Pi cloud chamber that creates a turbulent supersaturated environment for cloud formation. The experiments are conducted with a temperature-controlled flange to mimic the entrainment-mixing process. The entrainment zone is created at the center of the top surface of the chamber, allowing dry air of controlled temperature (Te) and flow rate (Qe) to flow into the mixing cloud region. Due to the large-scale circulation, the downwind region is directly affected by entrained dry air from the flange, whereas the upwind region is representative …


Dynamic And Thermodynamic Influences On Precipitation In Northeast Mexico On Orbital To Millennial Timescales, Kevin T. Wright, Kathleen R. Johnson, Gabriela Serrato Marks, David McGee, Tripti Bhattacharya, Gregory R. Goldsmith, Clay R. Tabor, Jean-Louis Lacaille-Muzquiz, Gianna Lum, Laura Beramendi-Orosco 2023 University of California, Irvine

Dynamic And Thermodynamic Influences On Precipitation In Northeast Mexico On Orbital To Millennial Timescales, Kevin T. Wright, Kathleen R. Johnson, Gabriela Serrato Marks, David Mcgee, Tripti Bhattacharya, Gregory R. Goldsmith, Clay R. Tabor, Jean-Louis Lacaille-Muzquiz, Gianna Lum, Laura Beramendi-Orosco

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative …


Accelerating Atmospheric Gravity Wave Simulations Using Machine Learning: Kelvin-Helmholtz Instability And Mountain Wave Sources Driving Gravity Wave Breaking And Secondary Gravity Wave Generation, Wenjun Dong, David Fritts, Alan Z. Liu, Hanli Liu, Jonathan Snively 2023 Embry-Riddle Aeronautical University

Accelerating Atmospheric Gravity Wave Simulations Using Machine Learning: Kelvin-Helmholtz Instability And Mountain Wave Sources Driving Gravity Wave Breaking And Secondary Gravity Wave Generation, Wenjun Dong, David Fritts, Alan Z. Liu, Hanli Liu, Jonathan Snively

Publications

Gravity waves (GWs) and their associated multi-scale dynamics are known to play fundamental roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe an initial, two-dimensional (2-D), machine learning model – the Compressible Atmosphere Model Network (CAMNet) - intended as a first step toward a more general, three-dimensional, highly-efficient, model for applications to nonlinear GW dynamics description. CAMNet employs a physics-informed neural operator to dramatically accelerate GW and secondary GW (SGW) simulations applied to two GW sources to date. CAMNet is trained on high-resolution simulations by the state-of-the-art model Complex Geometry Compressible Atmosphere Model (CGCAM). Two …


An Analysis Of Hurricane Laura's Storm Surge In Cameron Parish Using Synthetic Storm Tracks, Climatology, And Statistics, Cameron Goff 2023 Louisiana State University and Agricultural and Mechanical College

An Analysis Of Hurricane Laura's Storm Surge In Cameron Parish Using Synthetic Storm Tracks, Climatology, And Statistics, Cameron Goff

LSU Master's Theses

Cameron Parish is a large coastal parish in southwest Louisiana that has been impacted by several powerful tropical cyclones. In 2020, the strongest hurricane in recorded history to ever hit this region, Hurricane Laura, set a state record for the highest storm surge measurement at 6.34 meters. I examine the climatology of tropical cyclone landfalls in this parish, looking for trends in intensity and frequency with time. I then compare the extreme surge of Hurricane Laura with a dataset of 645 synthetic tropical cyclones generated and used by the Coastal Hazards System for Louisiana. Plots comparing various meteorological statistics to …


Gravity Waves Emitted From Kelvin-Helmholtz Instabilities, Alan Z. Liu, Wenjun Dong, David C. Fritts, Thomas S. Lunda, Han-Li Liu 2023 Embry-Riddle Aeronautical University

Gravity Waves Emitted From Kelvin-Helmholtz Instabilities, Alan Z. Liu, Wenjun Dong, David C. Fritts, Thomas S. Lunda, Han-Li Liu

Publications

Fritts, Wang, Lund, and Thorpe (2022, https://doi.org/10.1017/jfm.2021.1085) and Fritts, Wang, Thorpe, and Lund (2022, https://doi.org/10.1017/jfm.2021.1086) described a 3-dimensional direct numerical simulation of interacting Kelvin-Helmholtz instability (KHI) billows and resulting tube and knot (T&K) dynamics that arise at a stratified shear layer defined by an idealized, large-amplitude inertia-gravity wave. Using similar initial conditions, we performed a high-resolution compressible simulation to explore the emission of GWs by these dynamics. The simulation confirms that such shear can induce strong KHI with large horizontal scales and billow depths that readily emit GWs having high frequencies, small horizontal wavelengths, and large vertical group velocities. The …


Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Alan Z. Liu, Fan Yang, Christopher James Heale, Jonathan Brian Snively, Wenjun Dong, Thomas Lund 2023 Embry-Riddle Aeronautical University

Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Alan Z. Liu, Fan Yang, Christopher James Heale, Jonathan Brian Snively, Wenjun Dong, Thomas Lund

Publications

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated.
Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted …


Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund 2023 Embry-Riddle Aeronautical University

Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund

Publications

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated. Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted …


Dynamic Characteristics Of Aerosol Optical Properties Over Dibrugarh City In The North-Eastern Indian Region During 2018–2021, Akshansa Chauhan, Shukla Acharjee, Ramesh P. Singh, Brent N. Holben 2023 National Central University, Taiwan

Dynamic Characteristics Of Aerosol Optical Properties Over Dibrugarh City In The North-Eastern Indian Region During 2018–2021, Akshansa Chauhan, Shukla Acharjee, Ramesh P. Singh, Brent N. Holben

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aerosols play an important role in the earth's environment across the globe through their involvement in various earth system cycles. The change in the aerosol properties may cause short and long-term impacts, the knowledge of such changes is useful in the estimation of the pollution sources of any region. We have carried out the analysis of the aerosols' optical and radiative properties using AERONET station data from 2018 to 2021 in Dibrugarh City. The higher Aerosol Optical Depth (AOD) values during winter and pre-monsoon months indicate high anthropogenic activities, and biomass burning in Dibrugarh. The impact of various sources and …


Communicating About Extreme Heat: Results From Card Sorting And Think Aloud Interviews With Experts From Differing Domains, Jeannette Sutton, Nicholas Waugh, Savannah Olivas 2023 University at Albany, State University of New York

Communicating About Extreme Heat: Results From Card Sorting And Think Aloud Interviews With Experts From Differing Domains, Jeannette Sutton, Nicholas Waugh, Savannah Olivas

Emergency Preparedness, Homeland Security, and Cybersecurity Faculty Scholarship

Climate trends indicate that extreme heat events are becoming more common and more severe over time, requiring improved strategies to communicate heat risk and protective actions. However, there exists a disconnect in heat-related communication from experts, who commonly include heat related jargon (i.e., technical language), to decision makers and the general public. The use of jargon has been shown to reduce meaningful engagement with and understanding of messages written by experts. Translating technical language into comprehensible messages that encourage decision makers to take action has been identified as a priority to enable impact-based decision support. Knowing what concepts and terms …


Molecular Dynamics Simulation Data: Mw And Mlmw Water Model Ice Nucleation On A Hydrophilic Substrate With Negative Pressure, Will Cantrell, Tianshu Li, Issei Nakamura, Elise Rosky, Raymond Shaw 2023 Michigan Technological University

Molecular Dynamics Simulation Data: Mw And Mlmw Water Model Ice Nucleation On A Hydrophilic Substrate With Negative Pressure, Will Cantrell, Tianshu Li, Issei Nakamura, Elise Rosky, Raymond Shaw

Michigan Tech Research Data

This dataset contains the data supporting Figures in the study by Rosky et al., "Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension", submitted for publication in Atmospheric Chemistry and Physics in February 2023. Input files for reproducing the molecular dynamics simulations are included.

The abstract from the paper reads: Using a molecular model of water freezing on a hydrophilic substrate, it is found that heterogeneous ice nucleation rates occur at higher temperatures in water that is under tension, in other words under negative pressure. For pressures ranging from from 1 atm to …


Gravity Wave Drag Parameterizations For Earth’S Atmosphere, Christopher J. Heale, Christopher G. Kruse, Jadwiga H. Richter, M. Joan Alexander, Julio T. Bacmeister, Junhong Wei 2023 Embry-Riddle Aeronautical University

Gravity Wave Drag Parameterizations For Earth’S Atmosphere, Christopher J. Heale, Christopher G. Kruse, Jadwiga H. Richter, M. Joan Alexander, Julio T. Bacmeister, Junhong Wei

Publications

Atmospheric gravity waves (GWs), or buoyancy waves, transport momentum and energy through Earth’s atmosphere. GWs are important at nearly all levels of the atmosphere, though, the momentum they transport is particularly important in general circulation of the middle and upper atmosphere. Primary sources of atmospheric GWs are flow over mountains, moist convection, and imbalances in jet/frontal systems. Secondary GWs can also be generated as a result of dissipation of a primary GWs. Gravity waves typically have horizontal wavelengths of 10’s to 100’s of kilometers, though, they can have scales of 1’s to 1000’s of kilometers as well. Current effective resolutions …


Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi 2023 University of Kentucky

Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi

Theses and Dissertations--Mechanical Engineering

In June 2021 a series of high altitude flights were conducted in Spaceport America, NM, using a balloon launched Uncrewed Aircraft System (UAS) to assess its capability to conduct measurements of various atmospheric properties and study turbulence in the troposphere and lower stratosphere. This UAS descends using an automated flight trajectory. The instruments aboard included a NASA-developed infrasonic microphone to evaluate its remote turbulence detection capabilities and a five-hole probe capable of measuring the in situ wind vector. Also on board were temperature, humidity and wind profile sensors. This document focuses on the atmospheric properties measured at high altitudes, the …


Perceived Barriers To Cervical Cancer Screening Among Hispanic Women, Damaris Perez 2023 Walden University

Perceived Barriers To Cervical Cancer Screening Among Hispanic Women, Damaris Perez

Walden Dissertations and Doctoral Studies

AbstractHispanic women are among the ethnic groups with higher cervical cancer rates in the United States. This mixed-method study was conducted to explore perceived barriers and self-efficacy-related factors to cervical cancer screening in foreign-born Hispanic women in Florida. The theory of planned behavior was applied to determine if behavioral intentions influence access to cervical cancer screening. The inclusion criteria included Hispanic women 18 years old and older without a hysterectomy history. Quantitative data were collected through a self-administered survey. A total of 84 individuals completed the survey. A binary logistic regression analysis was performed to determine if sociodemographic factors are …


The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde IV 2023 Air Force Institute of Technology

The Behavior Of Partially Coherent Twisted Space-Time Beams In Atmospheric Turbulence, Milo W. Hyde Iv

Faculty Publications

We study how atmospheric turbulence affects twisted space-time beams, which are non-stationary random optical fields whose space and time dimensions are coupled with a stochastic twist. Applying the extended Huygens–Fresnel principle, we derive the mutual coherence function of a twisted space-time beam after propagating a distance z through atmospheric turbulence of arbitrary strength. We specialize the result to derive the ensemble-averaged irradiance and discuss how turbulence affects the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in simulation, twisted space-time beam field realizations and propagate them through atmospheric phase screens to validate our analysis.


Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai 2023 Michigan Technological University

Physical, Optical, And Chemical Properties Of Light Absorbing Aerosols And Their Climatic Impacts, Susan Mathai

Dissertations, Master's Theses and Master's Reports

Aerosols are particles suspended in the atmosphere; they are emitted during natural phenomena such as dust storms, wildfires, and volcanic eruptions, and during anthropogenic activities like household wood burning, vehicles operations, and industrial productions, or they can form in the atmosphere from gas to particle partition. Aerosols impact earth’s weather and climate by absorbing and scattering the incoming solar and the outgoing earth thermal radiation and interacting with clouds. The optical properties of aerosols evolve as the chemical and physical properties vary during their residence in the atmosphere. In addition, the aerosols’ properties strongly depend on the vertical distribution in …


Digital Commons powered by bepress