Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 96

Full-Text Articles in Physics

The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok Jan 2023

The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok

Physics Faculty Publications

The evolution in the post shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. Within a transitional period, the relaxation zone parameters past both, the reflected and transmitted waves, evolve differently compared to that in the incident wave. In a numerical example for the non-dissociating N2 gas heated to 5000 K/10,000 K across the interface and M = 3.5, the relaxation time for the transmitted wave is up to 50% shorter and the relaxation depth for both waves is significantly reduced, thus resulting in a weakened wave structure. The …


Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Cross-Section Measurement Of Virtual Photoproduction Of Iso-Triplet Three-Body Hypernucleus, ⋀Nn, T. Gogami, K. N. Suzuki, B. Pandey, K. Itabashi, S. Nagao, K. Okuyama, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T.J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P.E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Cross-Section Measurement Of Virtual Photoproduction Of Iso-Triplet Three-Body Hypernucleus, ⋀Nn, T. Gogami, K. N. Suzuki, B. Pandey, K. Itabashi, S. Nagao, K. Okuyama, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T.J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P.E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

Missing-mass spectroscopy with the 3H(e, e′K+) reaction was carried out at Jefferson Lab’s (JLab) Hall A in Oct–Nov, 2018. The differential cross section for the 3H(γ, K+nn was deduced at ω = EeEe′ = 2.102 GeV and at the forward K+-scattering angle (0° ≤ θγK ≤ 5°) in the laboratory frame. Given typical predicted energies and decay widths, which are (BΛ, Γ) = (−0.25, 0.8) and (−0.55, 4.7) MeV, the cross sections were found …


Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić Jan 2022

A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić

Physics Faculty Publications

Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard …


The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang Jan 2021

The Concept And Applications Of A Dual Energy Storage Ring, Bhawin Dital, Andrew Hutton, Geoffrey Krafft, Fanglei Lin, Vasiliy Morozov, Yuhong Zhang

Physics Faculty Publications

A dual energy electron storage ring configuration is initially proposed as an electron cooler to cool the ion beam in a collider. It consists of two energy loops, the electron beam in the high energy loop undergoes the synchrotron radiation damping to obtain the desired beam property and the beam in the low energy loop is for cooling of the ion beam. The two different energy loops are connected by an energy recovery linac. A lattice design of such a dual energy storage ring has been completed and beam stability conditions are established. We performed numerical simulations to demonstrate the …


Evidence Of Increased Radio-Frequency Losses In Cavities From The Fundamental Power Coupler Cold Window, Frank Marhauser, Gianluigi Ciovati Jan 2021

Evidence Of Increased Radio-Frequency Losses In Cavities From The Fundamental Power Coupler Cold Window, Frank Marhauser, Gianluigi Ciovati

Physics Faculty Publications

High radio-frequency (rf) losses measured for cavities in original Continuous Electron Beam Accelerator Facility (CEBAF) cryomodules, compared to the losses measured in single-cavity tests, have been a long-standing issue related to their performance. We summarize experimental evidence of increased rf losses in CEBAF cavities arising from the fundamental power coupler cold window and waveguide, respectively. Cryogenic rf tests were done on cavities tested in vertical cryostats as well as inside cryomodules in the accelerator tunnel. The cold window metallization losses were assessed by combining numerical results with measured data obtained with an existing cryogenic waveguide resonator setup. The results showed …


Intense Monochromatic Photons Above 100 Kev From An Inverse Compton Source, Kirsten Deitrick, Georg H. Hoffstaetter, Carl Franck, Bruno D. Muratori, Peter H. Williams, Geoffrey A, Krafft, Balša Terzić, Joe Crone, Hywel Owen Jan 2021

Intense Monochromatic Photons Above 100 Kev From An Inverse Compton Source, Kirsten Deitrick, Georg H. Hoffstaetter, Carl Franck, Bruno D. Muratori, Peter H. Williams, Geoffrey A, Krafft, Balša Terzić, Joe Crone, Hywel Owen

Physics Faculty Publications

Quasimonochromatic x rays are difficult to produce above 100 keV, but have a number of uses in x-ray and nuclear science, particularly in the analysis of transuranic species. Inverse Compton scattering (ICS) is capable of fulfilling this need, producing photon beams with properties and energies well beyond the limits of typical synchrotron radiation facilities. We present the design and predicted output of such an ICS source at CBETA, a multiturn energy-recovery linac with a top energy of 150 MeV, which we anticipate producing x rays with energies above 400 keV and a collimated flux greater than 108 photons per second …


Deeply Virtual Compton Scattering Off Helium Nuclei With Positron Beams, Sara Fucini, Mohammad Hattawy, Matteo Rinaldi, Segio Scopetta Jan 2021

Deeply Virtual Compton Scattering Off Helium Nuclei With Positron Beams, Sara Fucini, Mohammad Hattawy, Matteo Rinaldi, Segio Scopetta

Physics Faculty Publications

Positron initiated deeply virtual Compton scattering (DVCS) off 4He and 3He nuclei is described. The way the so-called d-term could be obtained from the real part of the relevant Compton form factor is summarized, and the importance and novelty of this measurement is discussed. The measurements addressed for 3He targets could be very useful even in a standard unpolarized target setup, measuring beam spin and beam charge asymmetries only. The unpolarized beam charge asymmetries for DVCS off 3He and 4He are also estimated, at JLab kinematics and, for 4He, also at a configuration typical …


A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen Jan 2021

A Proposed Beam-Beam Test Facility Combine, E. Nissen, Geoffrey Krafft, Jean Delayen

Physics Faculty Publications

The COmpact Machine for Beam-beam Interactions in Non-Equilibrium systems (COMBINE) is a proposed, dedicated, beam-beam test facility. The base design would make use of a pair of identical octagonal rings (2.5 meters per side) one rotated 180 degrees from the other, meeting at their common interaction point. These would be fed by an electron gun producing up to 125 keV electrons. The low energy will allow for beam-beam tune shifts commensurate with existing colliders, some linac-ring type systems, and will also allow for an exploration of the predicted effects of gear-changing, which would be performed using a variable pathlength scheme. …


First Demonstration Of The Use Of Crab Cavities On Hadron Beams, R. Calaga, A. Alekou, F. Antoniou, R. B. Appleby, L. Arnaudon, K. Artoos, G. Arduini, V. Baglin, S. Barriere, H. Bartosik, P. Baudrenghien, I. Ben-Zvi, T. Bohl, A. Boucherie, O. S. Brüning, K. Brondzinski, A. Butterworth, G. Burt, O. Capatina, S. Calvo, T. Capelli, M. Carlà, F. Carra, L. R. Carver, A. Castilla-Loeza, E. Daly, L. Dassa, J. Delayen, S. U. De Silva, A. Dexter, M. Garlasche, F. Gerigk, L. Giordanino, D. Glenat, M. Guinchard, A. Harrison, E. Jensen, C. Julie, T. Jones, F. Killing, A. Krawczyk, T. Levens, R. Leuxe, B. Lindstrom, Z. Li, A. Macewen, A. Macpherson, P. Menendez, T. Mikkola, P. Minginette, J. Mitchell, E. Montesinos, G. Papotti, H. Park, C. Pasquino, S. Pattalwar, E. C. Pleite, T. Powers, B. Prochal, A. Ratti, L. Rossi, V. Rude, M. Therasse, R. Tomás, N. Stapely, I. Santillana, N. Shipman, J. Simonin, M. Sosin, J. Swieszek, N. Templeton, G. Vandoni, S. Verdú-Andrés, M. Wartak, C. Welsch, D. Wollman, Q. Wu, B. Xiao, E. Yamakawa, C. Zanoni, F. Zimmermann, A. Zwozniak Jan 2021

First Demonstration Of The Use Of Crab Cavities On Hadron Beams, R. Calaga, A. Alekou, F. Antoniou, R. B. Appleby, L. Arnaudon, K. Artoos, G. Arduini, V. Baglin, S. Barriere, H. Bartosik, P. Baudrenghien, I. Ben-Zvi, T. Bohl, A. Boucherie, O. S. Brüning, K. Brondzinski, A. Butterworth, G. Burt, O. Capatina, S. Calvo, T. Capelli, M. Carlà, F. Carra, L. R. Carver, A. Castilla-Loeza, E. Daly, L. Dassa, J. Delayen, S. U. De Silva, A. Dexter, M. Garlasche, F. Gerigk, L. Giordanino, D. Glenat, M. Guinchard, A. Harrison, E. Jensen, C. Julie, T. Jones, F. Killing, A. Krawczyk, T. Levens, R. Leuxe, B. Lindstrom, Z. Li, A. Macewen, A. Macpherson, P. Menendez, T. Mikkola, P. Minginette, J. Mitchell, E. Montesinos, G. Papotti, H. Park, C. Pasquino, S. Pattalwar, E. C. Pleite, T. Powers, B. Prochal, A. Ratti, L. Rossi, V. Rude, M. Therasse, R. Tomás, N. Stapely, I. Santillana, N. Shipman, J. Simonin, M. Sosin, J. Swieszek, N. Templeton, G. Vandoni, S. Verdú-Andrés, M. Wartak, C. Welsch, D. Wollman, Q. Wu, B. Xiao, E. Yamakawa, C. Zanoni, F. Zimmermann, A. Zwozniak

Physics Faculty Publications

Many future particle colliders require beam crabbing to recover geometric luminosity loss from the nonzero crossing angle at the interaction point (IP). A first demonstration experiment of crabbing with hadron beams was successfully carried out with high energy protons. This breakthrough result is fundamental to achieve the physics goals of the high luminosity LHC (HL-LHC) and the future circular collider (FCC). The expected peak luminosity gain (related to collision rate) is 65% for HL-LHC and even greater for the FCC. Novel beam physics experiments with proton beams in CERN’s Super Proton Synchrotron (SPS) were performed to demonstrate several critical aspects …


Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration Jan 2021

Beam Spin Asymmetry In Semi-Inclusive Electroproduction Of Hadron Pairs, M. J. Amaryan, M. Hattawy, S. E. Kuhn, Y. Prok, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration

Physics Faculty Publications

A first measurement of the longitudinal beam spin asymmetry ALU in the semi-inclusive electroproduction of pairs of charged pions is reported. ALU is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498-GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the AsinLUϕR moments are extracted for the kinematic variables of interest in the valence quark region. The …


Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović May 2020

Characterizing Plasma With Emission Tomography-Feasibility Study On Synthetic And Experimental Data, M. Nikolić, A. Samolov, A. Godunov, L. Vušković,, S. Popović

Physics Faculty Publications

We present a feasibility study on different tomographic algorithms to overcome the issues of finite sets of projection data, limited viewing angles, and noisy data, which cause the tomographic reconstruction to be an ill-posed inversion problem. We investigated three approaches: single angle Abel inversion, two angle approach, and multiple angle 2D plasma tomography. These methods were tested on symmetric and asymmetric sample functions and on experimental results from a supersonic flowing argon microwave plasma sustained in a cylindrical quartz cavity. The analysis focused on the afterglow region of the microwave flow where a plasmoid-like formation was observed. We investigated the …


Polarization Analysis Of P̄ Produced In Pa Collisions, D. Grzonka, D. Alfs, A. Asaturyan, M. Carmignotto, M. Diermaier, W. Eyrich, B. Glowacz, F. Hauenstein, T. Horn, K. Kilian Jan 2019

Polarization Analysis Of P̄ Produced In Pa Collisions, D. Grzonka, D. Alfs, A. Asaturyan, M. Carmignotto, M. Diermaier, W. Eyrich, B. Glowacz, F. Hauenstein, T. Horn, K. Kilian

Physics Faculty Publications

A quite simple procedure for the generation of a polarized antiproton beam could be worked out if antiprotons are produced with some polarization. In order to investigate this possibility measurements of the polarization of produced antiprotons have been started at a CERN/PS test beam. The polarization will be determined from the asymmetry of the elastic antiproton scattering at a liquid hydrogen target in the CNI region for which the analyzing power is well known. The data are under analysis and an additional measurement is done in 2018. Details on the experiment and the ongoing data analysis will be given.


Drift Chamber Calibration And Particle Identification In The P-349 Experiment, D. Alfs, A. Asaturyan, M. Carmignotto, M. Diermaier, W. Eyrich, B. Glowacz, D. Grzonka, Florian Hauenstein, T. Horn, K. Kilian, D. Lersch, S. Malbrunot-Ettenauer, A. Mkrtchyan, H. Mkrtchyan, P. Moskal, P. Nadel-Turonski, W. Oelert, J. Ritman, T. Sefzick, V. Tadevosyan, E. Widmann, M. Wolke, S. Zhamkochyan, M. Zieliński, A. Zink, J. Zmeskal Jan 2019

Drift Chamber Calibration And Particle Identification In The P-349 Experiment, D. Alfs, A. Asaturyan, M. Carmignotto, M. Diermaier, W. Eyrich, B. Glowacz, D. Grzonka, Florian Hauenstein, T. Horn, K. Kilian, D. Lersch, S. Malbrunot-Ettenauer, A. Mkrtchyan, H. Mkrtchyan, P. Moskal, P. Nadel-Turonski, W. Oelert, J. Ritman, T. Sefzick, V. Tadevosyan, E. Widmann, M. Wolke, S. Zhamkochyan, M. Zieliński, A. Zink, J. Zmeskal

Physics Faculty Publications

The goal of the P-349 experiment is to test whether 3.5 GeV/c antiprotons produced in high-energy proton-proton collisions are polarized in view of the preparation of a polarized antiproton beam. In this article, we present the details of the ongoing analysis focused on the drift chambers calibration and particle identification with DIRC.


Measurement Of The Beam Spin Asymmetry Of →Ep → E'P'Η In The Deep-Inelastic Regime With Clas, B. Zhao, A. Kim, K. Joo, I . Bedlinskiy, W. Kim, V. Kubarovsky, M. Ungaro, G. Gavalian, A. Klein, S. E. Kuhn, Clas Collaboration Jan 2019

Measurement Of The Beam Spin Asymmetry Of →Ep → E'P'Η In The Deep-Inelastic Regime With Clas, B. Zhao, A. Kim, K. Joo, I . Bedlinskiy, W. Kim, V. Kubarovsky, M. Ungaro, G. Gavalian, A. Klein, S. E. Kuhn, Clas Collaboration

Physics Faculty Publications

The beam spin asymmetry of the exclusive pseudoscalar channel ep→e′p′η was measured for the first time in the deep-inelastic regime (W > 2 GeV/c2 and Q2 > 1 GeV2 /c2) using a longitudinally polarized 5.78 GeV electron beam at Jefferson Lab with the CEBAF Large Acceptance Spectrometer. The data were accumulated in 144 four-dimensional bins of Q2, xB, −t and ϕ over a wide kinematic range, where ϕ is the azimuthal angle between the lepton and hadron scattering planes, The measured azimuthal dependence with large amplitudes of the sin ϕ moments is …


Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik Jan 2019

Spectroscopy Of Neon For The Advanced Undergraduate Laboratory, H. C. Busch, M. B. Cooper, C. I. Sukenik

Physics Faculty Publications

We describe a spectroscopy experiment, suitable for upper-division laboratory courses, that investigates saturated absorption spectroscopy and polarization spectroscopy in a neon discharge. Both experiments use nearly identical components, allowing students to explore both techniques in a single apparatus. Furthermore, because the wavelength of the laser is in the visible part of the spectrum (640 nm), the experiment is well-suited for students with limited experience in optical alignment. The labs nicely complement a course in atomic or plasma physics, provide students with the opportunity to gain important technical skills in the area of optics and lasers, and can provide an introduction …


Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration Jan 2019

Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration

Physics Faculty Publications

In the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this Letter, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering …


Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković Jan 2019

Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković

Physics Faculty Publications

A comparative analysis of two popular spectroscopy techniques is conducted in a coaxial cylindrical capacitively coupled discharge designed for the plasma processing of superconducting radio frequency (SRF) cavities. The density of the metastable and resonant levels in Ar is measured in both Ar and Ar/Cl2 discharges to properly characterize the unique discharge system and aid in the development of a cavity etching routine. The first method, deemed the “branching fraction method,” utilizes the sensitivity of photon reabsorption of radiative decay to measure the lower state (metastable and resonant) densities by taking ratios of spectral lines with a common upper …


Determination Of The Magnetic Field Dependence Of The Surface Resistance Of Superconductors From Cavity Tests, J. R. Delayen, H. Park, S. Su. De Silva, G. Ciovati, Z. Li Dec 2018

Determination Of The Magnetic Field Dependence Of The Surface Resistance Of Superconductors From Cavity Tests, J. R. Delayen, H. Park, S. Su. De Silva, G. Ciovati, Z. Li

Physics Faculty Publications

We present a general method to derive the magnetic field dependence of the surface resistance of superconductors from the Q-curves obtained during the cryogenic tests of cavities. The results are applied to coaxial half-wave cavities, TM-like “elliptical” accelerating cavities, and cavities of more complicated geometries.


High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen Aug 2018

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen

Physics Faculty Publications

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the …


First Exclusive Measurement Of Deeply Virtual Compton Scattering Off 4He: Toward The 3d Tomography Of Nuclei, M. Hattawy, N. A. Baltzell, R. Dupré, K. Hafidi, S. Stepanyan, S. Bültmann, R. De Vita, A. El Alaoui, L. El Fassi, H. Egiyan, B. Torayev, D. Adikaram, M. J. Amaryan, G. Charles, M. Khachatryan, A. Klein, S. E. Kuhn, M. Mayer, Y. Prok, L. B. Weinstein, Z. W. Zhao Nov 2017

First Exclusive Measurement Of Deeply Virtual Compton Scattering Off 4He: Toward The 3d Tomography Of Nuclei, M. Hattawy, N. A. Baltzell, R. Dupré, K. Hafidi, S. Stepanyan, S. Bültmann, R. De Vita, A. El Alaoui, L. El Fassi, H. Egiyan, B. Torayev, D. Adikaram, M. J. Amaryan, G. Charles, M. Khachatryan, A. Klein, S. E. Kuhn, M. Mayer, Y. Prok, L. B. Weinstein, Z. W. Zhao

Physics Faculty Publications

We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized 4He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling 4 …


Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton May 2017

Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton

Physics Faculty Publications

The twin-axis cavity is a new kind of rf superconducting cavity that consists of two parallel beam pipes, which can accelerate or decelerate two spatially separated beams in the same cavity. This configuration is particularly effective for high-current beams with low-energy electrons that will be used for bunched beam cooling of high-energy protons or ions. The new cavity geometry was designed to create a uniform accelerating or decelerating fields for both beams by utilizing a TM110 dipole mode. This paper presents the design rf optimization of a 1497 MHz twin-axis single-cell cavity, which is currently under fabrication.


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park May 2017

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly …


Simulations Of Coherent Synchrotron Radiation On Parallel Hybrid Gpu/Cpu Platform, B. Terzić, K. Arumugam, D. Duffin, A. Godunov, T. Islam, D. Ranjan, S. Sangam, Mohammad Zubair Jan 2017

Simulations Of Coherent Synchrotron Radiation On Parallel Hybrid Gpu/Cpu Platform, B. Terzić, K. Arumugam, D. Duffin, A. Godunov, T. Islam, D. Ranjan, S. Sangam, Mohammad Zubair

Physics Faculty Publications

Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation, as well as fragmentation and microbunching. Numerical simulations of the 2D/3D CSR effects have been extremely challenging due to computational bottlenecks associated with calculating retarded potentials via integrating over the history of the bunch. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction …


Higher Order Multipole Analysis For 952.6 Mhz Superconducting Crabbing Cavities For Jefferson Lab Electron-Ion Collider, S. U. Desilva, H. Park, J. R. Delayen Jan 2017

Higher Order Multipole Analysis For 952.6 Mhz Superconducting Crabbing Cavities For Jefferson Lab Electron-Ion Collider, S. U. Desilva, H. Park, J. R. Delayen

Physics Faculty Publications

The proposed electron ion collider at Jefferson Lab requires a crabbing cavity system to increase the luminosity in the colliding beams. Currently several superconducting crabbing cavity designs are being reviewed as the design option for the crabbing cavity. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system, in selecting the design that meets the design specifications. The multipole components can be accurately determined numerically using the electromagnetic field data in the rf structure. This paper discusses the detailed analysis of higher order multipole components for the operating crabbing mode and …


Photon Beam Asymmetry Σ For Η And Η′ Photoproduction From The Proton, P. Collins, B. G. Ritchie, M. Dugger, A. V. Anisovich, M. Doring, E. Klempt, V. A. Nikonov, D. Rönchen, D. Sadasivan, A. Sarantsev, M. J. Amaryan, A. Klein Jan 2017

Photon Beam Asymmetry Σ For Η And Η′ Photoproduction From The Proton, P. Collins, B. G. Ritchie, M. Dugger, A. V. Anisovich, M. Doring, E. Klempt, V. A. Nikonov, D. Rönchen, D. Sadasivan, A. Sarantsev, M. J. Amaryan, A. Klein

Physics Faculty Publications

Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η ′ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γ p → η p reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γ p → η ′ p reaction. For γ p → η p , the data reported here considerably extend the range of measurements to higher energies, and are …


Cryogenic Rf Test Of The First Srf Cavity Etched In An Rf Ar/Cl2 Plasma, J. Upadhyay, A. Palczewski, S. Popovic, A.-M. Valente-Feliciano, Do Im, H. L. Phillips, L. Vuskovic Jan 2017

Cryogenic Rf Test Of The First Srf Cavity Etched In An Rf Ar/Cl2 Plasma, J. Upadhyay, A. Palczewski, S. Popovic, A.-M. Valente-Feliciano, Do Im, H. L. Phillips, L. Vuskovic

Physics Faculty Publications

An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of …


Photon Beam Asymmetry Σ In The Reaction →Γ P → Pω For Eγ = 1.152 To 1.876 Gev, P. Collins, B. G. Ritchie, M. Dugger, F. J. Klein, A. V. Anisovich, E. Klempt, V. A. Nikonov, A. Sarantsev, K. P. Adhikari, S. Adhikari, D. Adikaram, G. Charles, M. Khachatryan, A. Klein, Y. Prok, J. Zhang, Z. W. Zhao Jan 2017

Photon Beam Asymmetry Σ In The Reaction →Γ P → Pω For Eγ = 1.152 To 1.876 Gev, P. Collins, B. G. Ritchie, M. Dugger, F. J. Klein, A. V. Anisovich, E. Klempt, V. A. Nikonov, A. Sarantsev, K. P. Adhikari, S. Adhikari, D. Adikaram, G. Charles, M. Khachatryan, A. Klein, Y. Prok, J. Zhang, Z. W. Zhao

Physics Faculty Publications

Photon beam asymmetry Σ measurements for ω photoproduction in the reaction γ → p → ω p are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between t-channel meson …


Measurement Of The Differential And Total Cross Sections Of The ᵧd→Kºʌ(P) Reaction Within The Resonance Region, N. Compton, C. E. Taylor, K. Hicks, P. Cole, N. Zachariou, Y. Ilieva, P. Nadel-Turonski, E. Klempt, V. A. Nikonov, A. V. Sarantsev, C. E. Hyde, M. Khachatryan, A. Klein, Y. Prok, B. Torayev, J. Zhang Jan 2017

Measurement Of The Differential And Total Cross Sections Of The ᵧd→Kºʌ(P) Reaction Within The Resonance Region, N. Compton, C. E. Taylor, K. Hicks, P. Cole, N. Zachariou, Y. Ilieva, P. Nadel-Turonski, E. Klempt, V. A. Nikonov, A. V. Sarantsev, C. E. Hyde, M. Khachatryan, A. Klein, Y. Prok, B. Torayev, J. Zhang

Physics Faculty Publications

We report the first measurement of differential and total cross sections for the γd →K0 Λ(p)reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8-3.6 GeV and 0.5-2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for …