Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Physics

Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara Jan 2023

Temperature, Rf Field, And Frequency Dependence Performance Evaluation Of Superconducting Niobium Half-Wave Coaxial Cavity, N. K. Raut, G. Ciovati, S. U. De Silva, J. R. Delayen, P. Dhakal, B. D. Khanal, J. K. Tiskumara

Physics Faculty Publications

Recent advancement in superconducting radio frequency cavity processing techniques, with diffusion of impurities within the RF penetration depth, resulted in high quality factor with increase in quality factor with increasing accelerating gradient. The increase in quality factor is the result of a decrease in the surface resistance as a result of nonmagnetic impurities doping and change in electronic density of states. The fundamental understanding of the dependence of surface resistance on frequency and surface preparation is still an active area of research. Here, we present the result of RF measurements of the TEM modes in a coaxial half-wave niobium cavity …


Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto Jan 2023

Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto

Physics Faculty Publications

For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of …


Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen Jan 2023

Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The EIC is a major new project under construction at BNL in partnership with JLab. It relies upon a number of new SRF cavities at 197 MHz, 394 MHz, 591 MHz and 1773 MHz to pre-bunch, accelerate, cool and crab the stored beams. R&D is focusing on the 591 MHz elliptical cavity and 197 MHz crab cavity first as these are the most challenging. Preliminary designs of these cavities are presented along with an R&D status report. To avoid developing multiple different cryostats a modular approach is adopted using a high degree of commonality of parts and systems. This approach …


Samples For 3rd Harmonic Magnetometry Assessment Of Nbtin-Based Sis Structures, D.R. Beverstock, C.Z. Antoine, Jean R. Delayen, D. Manos, Iresha Harshani Senevirathne, J. K. Spradlin, A-M. Valente-Feliciano Jan 2022

Samples For 3rd Harmonic Magnetometry Assessment Of Nbtin-Based Sis Structures, D.R. Beverstock, C.Z. Antoine, Jean R. Delayen, D. Manos, Iresha Harshani Senevirathne, J. K. Spradlin, A-M. Valente-Feliciano

Physics Faculty Publications

In the quest for alternative superconducting materials to bring accelerator cavity performance beyond the bulk niobium (Nb) intrinsic limits, a promising concept uses superconductor-insulator-superconductor (SIS) thin film structures that allows magnetic flux shielding in accelerator cavities to higher fields [1]. Candidate materials for such structures are NbTiN as the superconductor and AlN as the insulator. We have demonstrated high quality NbTiN and AlN deposited by reactive DC magnetron sputtering (DCMS), both for individual layers and multilayers. Interface quality has been assessed for bilayer stacks with 250 nm NbTiN layers and AlN thicknesses from 30 nm down to1 nm. These SIS …


Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich Jan 2022

Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich

Physics Faculty Publications

Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to …


Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich Jan 2022

Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich

Physics Faculty Publications

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. When we cool these cavities at cryogenic temperature ~2 – 4 K, we can get optimum performance by minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the leading sources of residual losses in SRF cavities is trapped magnetic flux. The flux trapping mechanism depends on different surface preparations and cool-down conditions. We have designed, developed, and commissioned a combined magnetic (B) and temperature (T) mapping system using anisotropic magneto-resistance (AMR) sensors and carbon resistors …


Preliminary Results From Magnetic Field Scanning System For A Single-Cell Niobium Cavity, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich Jan 2022

Preliminary Results From Magnetic Field Scanning System For A Single-Cell Niobium Cavity, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich

Physics Faculty Publications

One of the building blocks of modern particle accelerators is superconducting radiofrequency (SRF) cavities. Niobium is the material of choice to build such cavities, which operate at liquid helium temperature (2 - 4 K) and have some of the highest quality factors found in Nature. There are several sources of residual losses, one of them is trapped magnetic flux, which limits the quality factor in SRF cavities. The flux trapping mechanism depends on different niobium surface preparations and cool-down conditions. Suitable diagnostic tools are not yet available to study the effects of such conditions on magnetic flux trapping. A magnetic …


Field Shielding Of NBT��N Based Multilayer Structure For Accelerating Cavities, Iresha Harshani Senevirathne, Jean R. Delayen, Alex Gurevich, D. R. Beverstock, A.-M. Valente-Feliciano Jan 2022

Field Shielding Of NBT��N Based Multilayer Structure For Accelerating Cavities, Iresha Harshani Senevirathne, Jean R. Delayen, Alex Gurevich, D. R. Beverstock, A.-M. Valente-Feliciano

Physics Faculty Publications

Over the past few decades, bulk niobium (Nb) has been the material of choice for superconducting radio frequency (SRF) cavities used in particle accelerators to achieve higher accelerating gradients and lower RF losses. Multi-layer (SIS) structures consisting of alternating thin layers of superconductor(S) and insulator(I) deposited on a bulk Nb have been proposed to enhance the peak surface magnetic field and sustain a higher accelerating gradient. In this study, multilayers based NbTiN and AlN deposited on bulk Nb are used to test the proposed enhancement using the DC magnetic Hall probe technique. The technique detects a penetrating magnetic field through …


Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler Jan 2022

Modeling A Nb3Sn Cryounit In Gpt In Uitf, Sunil Pokharel, Geoffey A. Krafft, A. S. Hofler

Physics Faculty Publications

Nb₃Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (E_{acc} 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb₃Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb₃Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show …


Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab, P. Dhakal, Bashu D. Khanal, Gianluigi Ciovati, G. R. Myneni Jan 2022

Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab, P. Dhakal, Bashu D. Khanal, Gianluigi Ciovati, G. R. Myneni

Physics Faculty Publications

Currently, fine grain niobium (Nb) (grain size ∼ 50 µm) and large grain Nb (grain size of a few cm) are being used for the fabrication of superconducting radio frequency (SRF) cavities. Medium grain forged ingot with grain size of a few hundred µm may be beneficial for cost-effectiveness as well as providing better performance for future SRF-based accelerators. Forged ingot Nb with medium grain size is a novel production method to obtain Nb discs used for the fabrication of superconducting radio frequency cavities. We have fabricated two 1.5 GHz single cell cavities made from forged Nb ingot with a …


Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal Jan 2022

Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal

Physics Faculty Publications

Trapped residual magnetic field during the cooldown of superconducting radio frequency (SRF) cavities is one of the primary source of RF residual losses leading to lower quality factor. Historically, SRF cavities have been fabricated from high purity fine grain niobium with grain size ~50 - 100 μm as well as large grain with grain size of the order of few centimeters. Non-uniform recrystallization of fine-grain Nb cavities after the post fabrication heat treatment leads to higher flux trapping during cooldown, hence the lower quality factor. We fabricated two 1.3 GHz single cell cavities from cold-worked niobium from different vendors and …


Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities, Jayendrika K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini Jan 2022

Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities, Jayendrika K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini

Physics Faculty Publications

Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment …


Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev

Physics Faculty Publications

A Superconducting twin axis cavity consisting of two identical beam pipes that can accelerate and decelerate beams within the same structure has been proposed for the Energy Recovery Linac (ERL) applications. There are two niobium twin axis cavities at JLab fabricated with the intention of later Nb₃Sn coating and now we are progressing to coat them using vapor diffusion method. Nb₃Sn is a potential alternate material for replacing Nb in SRF cavities for better performance and reducing operational costs. Because of advanced geometry, larger surface area, increased number of ports and hard to reach areas of the twin axis cavities, …


Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece

Physics Faculty Publications

The twin axis cavity with two identical accelerating beams has been proposed for energy recovery linac (ERL) applications. Nb3Sn is a superconducting material with a higher critical temperature and a higher critical field as compared to Nb, which promises a lower operating cost due to higher quality factors. Two niobium twin axis cavities were fabricated at JLab and were proposed to be coated with Nb3Sn. Due to their more complex geometry, the typical coating process used for basic elliptical cavi-ties needs to be improved to coat these cavities. This development advances the current coating system at …


Measurement Of The Magnetic Field Penetration Into Superconducting Thin Films, Iresha Harshani Senevirathne, Gianluigi Ciovati, Jean R. Delayen Jan 2019

Measurement Of The Magnetic Field Penetration Into Superconducting Thin Films, Iresha Harshani Senevirathne, Gianluigi Ciovati, Jean R. Delayen

Physics Faculty Publications

The magnetic field at which first flux penetrates is a fundamental parameter characterizing superconducting materials for SRF cavities. Therefore, an accurate technique is needed to measure the penetration of the magnetic field directly. The conventional magnetometers are inconvenient for thin superconducting film measurements because these measurements are strongly influenced by orientation, edge and shape effects. In order to measure the onset of field penetration in bulk, thin films and multi-layered superconductors, we have designed, built and calibrated a system combining a small superconducting solenoid capable of generating surface magnetic field higher than 500 mT and Hall probe to detect the …


Design And Commissioning Of A Magnetic Field Scanning System For Srf Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, W. A. Clemens, Jean R. Delayen, J. Nice, Alex V. Gurevich Jan 2019

Design And Commissioning Of A Magnetic Field Scanning System For Srf Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, W. A. Clemens, Jean R. Delayen, J. Nice, Alex V. Gurevich

Physics Faculty Publications

Trapped magnetic vortices are one of the leading sources of residual losses in SRF cavities. Mechanisms of flux pinning depend on the materials treatment and cool-down conditions. A magnetic field scanning system using flux-gate magnetometers and Hall probes has been designed and built to allow measuring the local magnetic field of trapped vortices normal to the outer surface of 1.3 GHz single-cell SRF cavities at cryogenic temperatures. Such system will allow inferring the key information about the distribution and magnitude of trapped flux in the SRF cavities for different material, surface preparations and cool-down conditions.


Measurement Of Surface Resistance Properties With Coaxial Resonators - Review, Hyekyoung Park, Subashini De Silva, J. R. Delayen Jan 2019

Measurement Of Surface Resistance Properties With Coaxial Resonators - Review, Hyekyoung Park, Subashini De Silva, J. R. Delayen

Physics Faculty Publications

Achieving ever decreasing surface resistance at higher field in superconducting RF accelerating structures is one of most outstanding developments in modern accelerators. The BCS theory has been used widely to estimate the surface resistance and to direct the technology. However, recent research results show that the behavior of the surface resistance further deviates from the BCS theory. So far the study on surface resistance was performed usually with cavities of single frequency which limited the study of frequency dependent surface resistance. The Center for Accelerator Science at Old Dominion University has designed and built several half wave coaxial cavities to …


Cryogenic Probe Station At Old Dominion University Center For Accelerator Science, Junki Makita, Jean R. Delayen, Alex Gurevich, Gianluigi Ciovati Jan 2018

Cryogenic Probe Station At Old Dominion University Center For Accelerator Science, Junki Makita, Jean R. Delayen, Alex Gurevich, Gianluigi Ciovati

Physics Faculty Publications

With a growing effort in research and development of an alternative material to bulk Nb for a superconducting radiofrequency (SRF) cavity, it is important to have a cost effective method to benchmark new materials of choice. At Old Dominion University's Center for Accelerator Science, a cryogenic probe station (CPS) will be used to measure the response of superconductor samples under RF fields. The setup consists of a closed-cycle refrigerator for cooling a sample wafer to a cryogenic temperature, a superconducting magnet providing a field parallel to the sample, and DC probes in addition to RF probes. The RF probes will …


Investigation Of The Surface Resistance Of Niobium Between 325 Mhz And 1300 Mhz Using A Coaxial Half-Wave Cavity, Hyekyoung Park, Jean R. Delayen, Subashini De Silva Jan 2018

Investigation Of The Surface Resistance Of Niobium Between 325 Mhz And 1300 Mhz Using A Coaxial Half-Wave Cavity, Hyekyoung Park, Jean R. Delayen, Subashini De Silva

Physics Faculty Publications

The Center for Accelerator Science at Old Dominion University has built a half-wave coaxial cavity (*) to measure the surface resistance of niobium as a function of frequency, temperature, rf field, preparation techniques, over a wide range of frequencies of interest for particle accelerators. The characteristics of the half-wave coaxial cavity provide these information on a same surface. The preliminary results showed clearly the frequency dependence of residual surface resistance (**). After establishing baseline, we have conducted a study of low temperature baking effect on the surface resistance under controlled environment. This paper will describe the details of the test …


Determination Of The Field-Dependence Of The Surface Resistance Of Superconductors From Cavity Tests, Jean R. Delayen, Subashini De Silva, Hyekyoung Park Jan 2018

Determination Of The Field-Dependence Of The Surface Resistance Of Superconductors From Cavity Tests, Jean R. Delayen, Subashini De Silva, Hyekyoung Park

Physics Faculty Publications

Cryogenic tests of superconducting cavities yield an average surface resistance as a function of the peak surface magnetic field. An analytical formalism has been developed to extract the actual field dependence of the surface resistance from cavity tests and is applied to coaxial cavities and cavities of more complex geometries.


Measurements Of Frequency, Temperature, Rf Field Dependent Surface Resistance Using Superconducting Half-Wave Cavity, Hyekyoung Park, Subashini De Silva, Jean R. Delayen Jan 2018

Measurements Of Frequency, Temperature, Rf Field Dependent Surface Resistance Using Superconducting Half-Wave Cavity, Hyekyoung Park, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

A theory of surface resistance of superconductor was rigorously formulated by Bardeen, Cooper, Schrieffer more than 50 years ago. Since then the accelerator community has been used the theory as a guideline to improve the surface resistance of the superconducting cavity. It has been observed that the surface resistance is dependent on frequency, temperature and rf field strength, and surface preparation. To verify these dependences, a well-controlled study is required. Although many different types of cavities have been tested, the typical superconducting cavities are built for specific frequencies of their application. They do not provide data other than at its …


Development Of A Superconducting Twin Axis Cavity, H. Park, F. Marhauser, A. Hutton, S. U. De Silva, J. R. Delayen May 2017

Development Of A Superconducting Twin Axis Cavity, H. Park, F. Marhauser, A. Hutton, S. U. De Silva, J. R. Delayen

Physics Faculty Publications

Superconducting cavities with two separate accelerating axes have been proposed in the past for energy recovery linac applications. While the study showed the advantages of such cavity, the designs present serious fabrication challenges. Hence the proposed cavities have never been built. The new design, elliptical twin cavity, proposed by Jefferson Lab and optimized by Center for Accelerator Science at Old Dominion University, allows similar level of engineering and fabrication techniques of a typical elliptical cavity. This paper describes preliminary LOM and HOM spectrum, engineering and fabrication processes of the twin axis cavity.


Optimization Of The Rf Cavity Heat Load And Trip Rates For Cebaf At 12 Gev, H. Zhang, Y. Roblin, A. Freyberger, G. Krafft, B. Terzić Jan 2017

Optimization Of The Rf Cavity Heat Load And Trip Rates For Cebaf At 12 Gev, H. Zhang, Y. Roblin, A. Freyberger, G. Krafft, B. Terzić

Physics Faculty Publications

The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.


First Results Of Magnetic Field Penetration Measurements Of Multilayer Sis Structures, O. B. Malyshev, L. Gurran, R. Valizadeh, S. Pattalwar, N. Pattalwar, K. D. Dumbell, A. Gurevich Jan 2016

First Results Of Magnetic Field Penetration Measurements Of Multilayer Sis Structures, O. B. Malyshev, L. Gurran, R. Valizadeh, S. Pattalwar, N. Pattalwar, K. D. Dumbell, A. Gurevich

Physics Faculty Publications

The performance of superconducting RF cavities made of bulk Nb is limited by a breakdown field of Bp ≈200 mT, close to the superheating field for Nb. A potentially promising solution to enhance the breakdown field of the SRF cavities beyond the intrinsic limits of Nb is a multilayer coating suggested in [1]. In the simplest case, such a multilayer may be a superconductor-insulator-superconductor (S-I-S) coating, for example, bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of another superconductor (S) which could be e.g. dirty niobium [2]. Here we report the …


Temperature Mapping Of Nitrogen-Doped Niobium Superconducting Radiofrequency Cavities, Junki Makita, Gianluigi Ciovati, Pashupati Dhakal Jan 2015

Temperature Mapping Of Nitrogen-Doped Niobium Superconducting Radiofrequency Cavities, Junki Makita, Gianluigi Ciovati, Pashupati Dhakal

Physics Faculty Publications

It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities …


Nitrogen Doping Study In Ingot Niobium Cavities, Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni, Junki Makita Jan 2015

Nitrogen Doping Study In Ingot Niobium Cavities, Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni, Junki Makita

Physics Faculty Publications

Thermal diffusion of nitrogen in superconducting radio frequency cavities at temperatures around 800C has resulted in the increase in quality factor with a low-field Q-rise. However, the maximum accelerating gradients of these doped cavities often reduces below the values achieved by standard treatments. In this contribution, we present the results of the nitrogen diffusion into ingot niobium cavities subjected to successive material removal from the inner cavity surface by electropolishing in an effort to explore the underlying cause for the gradient degradation.


Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips Jan 2015

Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips

Physics Faculty Publications

The inner surfaces of SRF cavities are currently chemically treated (etched or electro polished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically …


Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton Jan 2015

Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton

Physics Faculty Publications

Superconducting RF cavity developments are currently on-going for new accelerator projects at CERN such as HIE ISOLDE and HL-LHC. Mechanical RF tuning systems are required to compensate cavity frequency shifts of the cavities due to temperature, mechanical, pressure and RF effects on the cavity geometry. A rich history and experience is available for such mechanical tuners developed for existing RF cavities. Design constraints in the context of HIE ISOLDE and HL-LHC such as required resolution, space limitation, reliability and maintainability have led to new concepts in the tuning mechanisms. This paper will discuss such new approaches, their performances and planned …


Meic Design Progress, S. Ahmed, Y. Zhang, Y.S. Derbenev, D. Douglas, R. Ent, A. Hutton, A. Kimber, G.A. Krafft, R. Li, F. Lin, V. S. Morozov, P. Nadel-Turonski, E. W. Nissen, R. Rimmer, F.C. Pilat, T. Satogata, C. Tennant, Balsa Terzić, H. Wang, S. Wang, B. C. Yunn, D. P. Barber, Y. Filatov, C. Hyde, A. M. Kondratenko, S. L. Manikonda, P. N. Ostroumov, M. K. Sullivan Jan 2012

Meic Design Progress, S. Ahmed, Y. Zhang, Y.S. Derbenev, D. Douglas, R. Ent, A. Hutton, A. Kimber, G.A. Krafft, R. Li, F. Lin, V. S. Morozov, P. Nadel-Turonski, E. W. Nissen, R. Rimmer, F.C. Pilat, T. Satogata, C. Tennant, Balsa Terzić, H. Wang, S. Wang, B. C. Yunn, D. P. Barber, Y. Filatov, C. Hyde, A. M. Kondratenko, S. L. Manikonda, P. N. Ostroumov, M. K. Sullivan

Physics Faculty Publications

This paper will report the recent progress in the conceptual design of MEIC, a high luminosity medium energy polarized ring-ring electron-ion collider at Jefferson lab. The topics and achievements that will be covered are design of the ion large booster and the ERL-circulator-ring-based electron cooling facility, optimization of chromatic corrections and dynamic aperture studies, schemes and tracking simulations of lepton and ion polarization in the figure-8 collider ring, and the beam-beam and electron cooling simulations. A proposal of a test facility for the MEIC electron cooler will also be discussed.