Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Physics

Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto Jan 2023

Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto

Physics Faculty Publications

For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of …


Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen Jan 2023

Cavity And Cryomodule Developments For Eic, R. A. Rimmer, E. Daly, J. Guo, J. Henry, J. Matalevich, H. Wang, S. Wang, D. Holmes, K. Smith, W. Xu, A. Zaltsman, B. Xiao, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The EIC is a major new project under construction at BNL in partnership with JLab. It relies upon a number of new SRF cavities at 197 MHz, 394 MHz, 591 MHz and 1773 MHz to pre-bunch, accelerate, cool and crab the stored beams. R&D is focusing on the 591 MHz elliptical cavity and 197 MHz crab cavity first as these are the most challenging. Preliminary designs of these cavities are presented along with an R&D status report. To avoid developing multiple different cryostats a modular approach is adopted using a high degree of commonality of parts and systems. This approach …


Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu Jan 2023

Eic 197 Mhz Crab Cavity Rf Optimization, Zenghai Li, Subashini U. De Silva, Jean R. Delayen, Robert A. Rimmer, Qiong Wu, Binping Xiao, Wencan Xu

Physics Faculty Publications

Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and …


197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider, Subashini De Silva, Jean Delayen, J. Guo, R. A. Rimmer, Z. Li, B. P. Xiao Jan 2022

197 Mhz Waveguide Loaded Crabbing Cavity Design For The Electron-Ion Collider, Subashini De Silva, Jean Delayen, J. Guo, R. A. Rimmer, Z. Li, B. P. Xiao

Physics Faculty Publications

The Elec­tron-Ion Col­lider will re­quire crab­bing sys­tems at both hadron and elec­tron stor­age rings in order to reach the de­sired lu­mi­nos­ity goal. The 197 MHz crab cav­ity sys­tem is one of the crit­i­cal rf sys­tems of the collider. The crab cav­ity, based on the rf-di­pole de­sign, explores the op­tion of wave­guide load damp­ing to sup­press the higher order modes and meet the tight im­ped­ance spec­i­fi­ca­tions. The cav­ity is de­signed with com­pact dog-bone wave­guides with tran­si­tions to rec­tan­gu­lar wave-guides and wave­guide loads. This paper pre­sents the com­pact 197 MHz crab cav­ity de­sign with wave­guide damp­ing and other an­cil­lar­ies.


Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer Jan 2021

Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer

Physics Faculty Publications

The Electron-Ion Collider requires several crabbing systems to facilitate head-on collisions between electron and proton beams in increasing the luminosity at the interaction point. One of the critical rf systems is the 197 MHz crabbing system that will be used in crabbing the proton beam. Many factors such as the low operating frequency, large transverse voltage requirement, tight longitudinal and transverse impedance thresholds, and limited beam line space makes the crabbing cavity design challenging. The rf-dipole cavity design is considered as one of the crabbing cavity options for the 197 MHz crabbing system. The cavity is designed including the HOM …


Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva Jan 2019

Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva

Physics Faculty Publications

Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. …


Analysis Of Higher Order Multipoles Of The 952.6 Mhz Rf-Dipole Crabbing Cavity For The Jefferson Lab Electron Ion Collider, Subashini U. De Silva, J. R. Delayen, V. S. Morozov, H. Park, S. Sosa Jan 2019

Analysis Of Higher Order Multipoles Of The 952.6 Mhz Rf-Dipole Crabbing Cavity For The Jefferson Lab Electron Ion Collider, Subashini U. De Silva, J. R. Delayen, V. S. Morozov, H. Park, S. Sosa

Physics Faculty Publications

The crabbing system is a key feature in the Jefferson Lab Electron-Ion Collider (JLEIC) required to increase the luminosity of the colliding bunches. A local crabbing system will be installed with superconducting rf-dipole crabbing cavities operating at 952.6 MHz. The field non-uniformity across the beam aperture in the crabbing cavities produces higher order multipole components, similar to that which are present in magnets. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system. In this paper, we quantify the multipole components and analyse their effects on the beam dynamics.


Simulation And Measurements Of Hom Filter Of The Larp Prototype Rf-Dipole Crabbing Cavity Using An Rf Test Box, Subashini U. De Silva, Jean R. Delayen, Z. Li Jan 2019

Simulation And Measurements Of Hom Filter Of The Larp Prototype Rf-Dipole Crabbing Cavity Using An Rf Test Box, Subashini U. De Silva, Jean R. Delayen, Z. Li

Physics Faculty Publications

The RF-Dipole Crabbing Cavity designed for the LHC High Luminosity Upgrade includes two higher order mode (HOM) couplers. One of the HOM couplers is an rf filter, which is a high pass filter designed to couple to the horizontal dipole modes and accelerating modes up to 2 GHz, while rejecting the fundamental operating mode at 400 MHz. The coupler consists of a high pass filter circuit where the rejection of the operating mode and transmission of HOMs are sensitive to dimensional deviations. An rf test box has been designed to measure the transmission of the rf filter in order to …


Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen Jan 2019

Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen

Physics Faculty Publications

The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics.


Cryogenic Test Results Of The Sps Prototype Rf-Dipole Crabbing Cavity With Higher Order Mode Couplers, Subashini De Silva, H. Park, Jean R. Delayen, Z. Li Jan 2018

Cryogenic Test Results Of The Sps Prototype Rf-Dipole Crabbing Cavity With Higher Order Mode Couplers, Subashini De Silva, H. Park, Jean R. Delayen, Z. Li

Physics Faculty Publications

The rf-dipole crabbing cavity planned for the LHC High Luminosity Upgrade is designed to deliver a transverse kick of 3.34 MV; crabbing the proton beam in the horizontal plane. The proton beams of the LHC machine operating at 7 TeV each sets high impedance thresholds on the crabbing cavity systems. The rf-dipole crabbing cavity is designed with a two higher order mode couplers to suppress those HOMs. The first prototype of the HOM couplers are fabricated at Jefferson Lab. This paper reports the cryogenic test results of the HOM couplers with the SPS prototype rf-dipole cavity.


Room Temperature Measurements Of Higher Order Modes For The Sps Prototype Rf Dipole Crabbing Cavity, Subashini De Silva, P. Berrutti, Jean R. Delayen, N. A. Huque, Hyekyoung Park Jan 2018

Room Temperature Measurements Of Higher Order Modes For The Sps Prototype Rf Dipole Crabbing Cavity, Subashini De Silva, P. Berrutti, Jean R. Delayen, N. A. Huque, Hyekyoung Park

Physics Faculty Publications

LHC High Luminosity Upgrade will be developing two local crabbing systems to increase the luminosity of the colliding bunches at the ATLAS and CMS experiments. One of the crabbing systems uses the rf-dipole cavity design that will be crabbing the beam in the horizontal plane. The fully integrated crabbing cavity has two higher order mode couplers in damping those excited modes. Currently two sets of HOM couplers have been fabricated at Jefferson Lab for prototyping and testing with the LARP crabbing cavities. This paper presents the measurements of the higher order modes with the prototype HOM couplers carried out at …


Rf Tests Of Rf-Dipole Prototype Crabbing Cavities For Lhc High Luminosity Upgrade, Subashini De Silva, Hyekyoung Park, Jean R. Delayen, Zi Li Jan 2018

Rf Tests Of Rf-Dipole Prototype Crabbing Cavities For Lhc High Luminosity Upgrade, Subashini De Silva, Hyekyoung Park, Jean R. Delayen, Zi Li

Physics Faculty Publications

The superconducting rf-dipole crabbing cavity is one of the two crabbing cavity designs proposed for the LHC high luminosity upgrade. The proof-of-principle (P-o-P) rf-dipole cavity operating at 400 MHz has demonstrated performance exceeding the design specifications. The prototype cavity for SPS beam test has been designed to include the fundamental power coupler, HOM couplers, and all the ancillary components intended to meet the design requirements. The crab cavities will be installed in the SPS beam line prior to the installation in LHC; this will be the first crabbing cavity operation on a proton beam. The fabrication of two prototype rf-dipole …


Lessons Learned From Rf-Dipole Prototype Cavities For Lhc High Luminosity Upgrade, Subashini De Silva, Jean R. Delayen, Z. Li, H. Park Jan 2018

Lessons Learned From Rf-Dipole Prototype Cavities For Lhc High Luminosity Upgrade, Subashini De Silva, Jean R. Delayen, Z. Li, H. Park

Physics Faculty Publications

The RF-Dipole Crabbing Cavity designed for the LHC High Luminosity Upgrade includes two higher order mode (HOM) couplers. One of the HOM couplers is an rf filter, which is a high pass filter designed to couple to the horizontal dipole modes and accelerating modes up to 2 GHz, while rejecting the fundamental operating mode at 400 MHz. The coupler consists of a high pass filter circuit where the rejection of the operating mode and transmission of HOMs are sensitive to dimensional deviations. An rf test box has been designed to measure the transmission of the rf filter in order to …


Coupled Bunch Instability From Jleic Crab Cavity Higher Order Modules, S. I. Sosa, R. Li, H. Park, S. De Silva, V. S. Morozov, J. R. Delayen Jan 2018

Coupled Bunch Instability From Jleic Crab Cavity Higher Order Modules, S. I. Sosa, R. Li, H. Park, S. De Silva, V. S. Morozov, J. R. Delayen

Physics Faculty Publications

Particle bunches traveling in a ring can excite wakefields inside any radio-frequency element present. These electromagnetic modes can resonate long enough and interact with subsequent passing bunches. A coherent oscillation between bunches can quickly become an instability and needs to be addressed. The Jefferson Lab electron ion collider has a large 50 mrad crossing angle and thus relies on bunch crabbing to achieve high luminosity. Bunch crabbing is done with compact superconducting rf dipole cavities. We study coupled bunch oscillations driven by the higher order modes of multicell RFD crab cavities under study for JLEIC, we calculate the instability growth …


Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton May 2017

Electromagnetic Design Of A Superconducting Twin Axis Cavity, S. U. De Silva, H. Park, J. R. Delayen, F. Marhauser, A. Hutton

Physics Faculty Publications

The twin-axis cavity is a new kind of rf superconducting cavity that consists of two parallel beam pipes, which can accelerate or decelerate two spatially separated beams in the same cavity. This configuration is particularly effective for high-current beams with low-energy electrons that will be used for bunched beam cooling of high-energy protons or ions. The new cavity geometry was designed to create a uniform accelerating or decelerating fields for both beams by utilizing a TM110 dipole mode. This paper presents the design rf optimization of a 1497 MHz twin-axis single-cell cavity, which is currently under fabrication.


Development Of A Superconducting Twin Axis Cavity, H. Park, F. Marhauser, A. Hutton, S. U. De Silva, J. R. Delayen May 2017

Development Of A Superconducting Twin Axis Cavity, H. Park, F. Marhauser, A. Hutton, S. U. De Silva, J. R. Delayen

Physics Faculty Publications

Superconducting cavities with two separate accelerating axes have been proposed in the past for energy recovery linac applications. While the study showed the advantages of such cavity, the designs present serious fabrication challenges. Hence the proposed cavities have never been built. The new design, elliptical twin cavity, proposed by Jefferson Lab and optimized by Center for Accelerator Science at Old Dominion University, allows similar level of engineering and fabrication techniques of a typical elliptical cavity. This paper describes preliminary LOM and HOM spectrum, engineering and fabrication processes of the twin axis cavity.


Wakefield Analysis Of Superconducting Rf-Dipole Cavities, Subashini De Silva, Jean Delayen May 2017

Wakefield Analysis Of Superconducting Rf-Dipole Cavities, Subashini De Silva, Jean Delayen

Physics Faculty Publications

RF-dipole crabbing cavities are being considered for a variety of crabbing applications. Some of the applications are the crabbing cavity systems for LHC High Luminosity Upgrade and the proposed Electron-Ion Collider for Jefferson Lab. The design requirements in the current applications require the cavities to incorporate complex damping schemes to suppress the higher order modes that may be excited by the high intensity proton or electron beams traversing through the cavities. The number of cavities required to achieve the desired high transverse voltage, and the complexity in the cavity geometries also contributes to the wakefields generated by beams. This paper …


Lhc Crab Cavity Coupler Test Boxes, J. A. Mitchell, R. Apsimon, G. Burt, R. Calaga, A. Macpherson, E. Montesinos, S.D. Silva, A.R.J. Tutte, B.P. Xiao Jan 2016

Lhc Crab Cavity Coupler Test Boxes, J. A. Mitchell, R. Apsimon, G. Burt, R. Calaga, A. Macpherson, E. Montesinos, S.D. Silva, A.R.J. Tutte, B.P. Xiao

Physics Faculty Publications

The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.


Design And Prototyping Of A 400 Mhz Rf-Dipole Crabbing Cavity For The Lhc High-Luminosity Upgrade, S. U. De Silva, J. R. Delayen, H. Park, Z. Li, T. H. Nicol Jan 2015

Design And Prototyping Of A 400 Mhz Rf-Dipole Crabbing Cavity For The Lhc High-Luminosity Upgrade, S. U. De Silva, J. R. Delayen, H. Park, Z. Li, T. H. Nicol

Physics Faculty Publications

LHC High Luminosity Upgrade is in need of two crabbing systems that deflects the beam in both horizontal and vertical planes. The 400 MHz rf-dipole crabbing cavity system is capable of crabbing the proton beam in both planes. At present we are focusing our efforts on a complete crabbing system in the horizontal plane. Prior to LHC installation the crabbing system will be installed for beam test at SPS. The crabbing system consists of two rf-dipole cavities in the cryomodule. This paper discusses the electromagnetic design and mechanical properties of the rf-dipole crabbing system for SPS beam test.


Imperfection And Tolerance Analysis Of Hom Couplers For Odu/Slac 400 Mhz Crabbing Cavity, S. U. De Silva, R. G. Olave, H. Park, J. R. Delayen, Z. Li Jan 2015

Imperfection And Tolerance Analysis Of Hom Couplers For Odu/Slac 400 Mhz Crabbing Cavity, S. U. De Silva, R. G. Olave, H. Park, J. R. Delayen, Z. Li

Physics Faculty Publications

In preparation for the LHC High Luminosity upgrade, a 400 MHz crab cavity has been developed jointly at ODU/SLAC, including two higher order mode couplers designed to dampen the wakefields in order to comply with the impedance budget specified for the LHC system. During fabrication, assembly, and processing of the couplers, a number of imperfections may arise that could modify the higher order mode spectrum and the associated impedance for each mode. We present here a detailed study of the imperfections of the horizontal- and vertical- HOM couplers, and the associated allowed tolerances for manufacture, assembly and processing.


A Compact Beam Spreader Using Rf Deflecting Cavities For The Lcls-Ii, S.U. De Silva, J. R. Delayen, R. G. Olave, L. Doolittle, P. Emma Jan 2014

A Compact Beam Spreader Using Rf Deflecting Cavities For The Lcls-Ii, S.U. De Silva, J. R. Delayen, R. G. Olave, L. Doolittle, P. Emma

Physics Faculty Publications

The LCLS-II project currently under development is designed to accelerate electron bunches up to 4 GeV and transport them to one of two FEL undulators located more than 2 km downstream of the end of the LCLS-II linac. The upgrade requires a spreader system to separate the baseline electron bunches and transport them to two undulator lines or a local dump. Fast bipolar kickers (FK) or transverse electric rf deflectors (RFD) are considered as fast-switching devices (FSD). In the RFD approach described here three design options operating at 325 MHz are studied including a superconducting rf-dipole cavity, a normal conducting …


Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen Jan 2014

Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

Parasitic higher order modes (HOMs) can be severely detrimental to the performance of superconducting cavities. For this reason, the mode spectrum and beam coupling strength must be examined in detail to determine which modes must be damped. One advantage of the spoke cavity geometry is that couplers can be placed on the outer body of the cavity rather than in the beam line space. We present an overview of the HOM properties of spoke cavities and methods for suppressing the most harmful ones.