Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 177

Full-Text Articles in Molecular Biology

Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim Jan 2019

Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim

Open Access Articles

Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1(-/-) mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis ...


Evaluation Of Motor Cortex Neuronal Morphology In Developmental Hyperserotonemia Rat Model, Colten Z. Dillinger Dec 2018

Evaluation Of Motor Cortex Neuronal Morphology In Developmental Hyperserotonemia Rat Model, Colten Z. Dillinger

MSU Graduate Theses

Fetal serotonin levels are involved in the development of the serotonergic system in an autoregulatory manner as well as the organization and connectivity of non-serotonergic neurons. Insufficient serotonin levels during development result in improper neuronal maturation and decreased synaptogenesis. Conversely, excess developmental serotonin levels can alter the progression of serotonergic neurons, ultimately resulting in a chronic decrease of serotonin in the developed brain via a negative feedback mechanism. There is a known correlation between autistic patients and chronically decreased brain serotonin concentrations; this is potentially implicated in the impaired development of the autistic brain. Incomplete or delayed development of motor ...


Differential Expression Of Zinc Transporters Accompanies The Differentiation Of C2c12 Myoblasts, Amanda L. Paskavitz, Julia Quintana, Daniella Cangussu, Cristina Tavera-Montanez, Yao Xiao, Sonia Ortiz-Mirnada, Juan G. Navea, Teresita Padilla-Benavides Sep 2018

Differential Expression Of Zinc Transporters Accompanies The Differentiation Of C2c12 Myoblasts, Amanda L. Paskavitz, Julia Quintana, Daniella Cangussu, Cristina Tavera-Montanez, Yao Xiao, Sonia Ortiz-Mirnada, Juan G. Navea, Teresita Padilla-Benavides

Open Access Articles

Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular ...


Effect Of Arsenic Exposure On Early Eye Development In Zebrafish (Danio Rerio), Remy S. Babich Aug 2018

Effect Of Arsenic Exposure On Early Eye Development In Zebrafish (Danio Rerio), Remy S. Babich

Electronic Theses and Dissertations

Arsenic is a metalloid that contaminates drinking water supplies worldwide. Due to concerns for human health, the World Health Organization (WHO) and the U.S. Environmental Protection Agency (EPA) have established a safe level in drinking water of ≤ 10 ppb. Arsenic has been shown to have carcinogenic effects in humans at high and low doses. Chronic exposure may result in dermal conditions such as hyperkeratosis and hyperpigmentation. Recently, arsenic exposure has also been linked to lower IQ values in children. The effect of arsenic on neurogenesis, specifically eye development, has not been widely explored. This study aimed to examine the ...


Llc Tumor Cells-Derivated Factors Reduces Adipogenesis In Co-Culture System, Magno Alves Lopes, Felipe Oliveira Franco, Felipe Henriques, Sidney Barnabe Peres, Miguel Luiz Batista Jr. Jul 2018

Llc Tumor Cells-Derivated Factors Reduces Adipogenesis In Co-Culture System, Magno Alves Lopes, Felipe Oliveira Franco, Felipe Henriques, Sidney Barnabe Peres, Miguel Luiz Batista Jr.

Open Access Articles

Cancer cachexia (CC) is a multifactorial syndrome with an unknown etiology. The primary symptom is the progressive reduction of the body weight. Recently, down-regulation of adipogenic and lipogenic genes were demonstrated to be early affected during cachexia progression in adipose tissue (AT), resulting in AT remodeling. Thus, this study aimed to evaluate in a co-culture system the influence of the Lewis Lung Carcinoma (LLC) tumor cells (c/c-LLC) in an established pre-adipocyte cell line 3T3-L1 adipogenic capacity. c/c-LLC in the presence of 3T3-L1 caused a reduction in lipids accumulation, suggesting that secretory tumor cells products may affect adipogenesis. Interestingly ...


Etv4 Transcription Factor And Mmp13 Metalloprotease Are Interplaying Actors Of Breast Tumorigenesis, Mandy Dumortier, Franck Ladam, Isabelle Damour, Sophie Vacher, Ivan Bieche, Nathalie Marchand, Yvan De Launoit, David Tulasne, Anne Chotteau-Lelievre Jul 2018

Etv4 Transcription Factor And Mmp13 Metalloprotease Are Interplaying Actors Of Breast Tumorigenesis, Mandy Dumortier, Franck Ladam, Isabelle Damour, Sophie Vacher, Ivan Bieche, Nathalie Marchand, Yvan De Launoit, David Tulasne, Anne Chotteau-Lelievre

Open Access Articles

BACKGROUND: The ETS transcription factor ETV4 is involved in the main steps of organogenesis and is also a significant mediator of tumorigenesis and metastasis, such as in breast cancer. Indeed, ETV4 is overexpressed in breast tumors and is associated with distant metastasis and poor prognosis. However, the cellular and molecular events regulated by this factor are still misunderstood. In mammary epithelial cells, ETV4 controls the expression of many genes, MMP13 among them. The aim of this study was to understand the function of MMP13 during ETV4-driven tumorigenesis.

METHODS: Different constructs of the MMP13 gene promoter were used to study the ...


Effect Of Egta On Sit1 Scramblase Gene Expression And Cell Growth In Tetrahymena Thermophila, Emma Esposito, Theda Knauth, Amelia Ohnstad, Stefanie Otto-Hitt Jul 2018

Effect Of Egta On Sit1 Scramblase Gene Expression And Cell Growth In Tetrahymena Thermophila, Emma Esposito, Theda Knauth, Amelia Ohnstad, Stefanie Otto-Hitt

Life and Environmental Sciences Course-based Research Projects

Scramblase is an enzyme that facilitates the movement of newly synthesized phospholipids from the cytosolic side to the extracellular side of the lipid bilayer. This process is vital for cell membrane repair and growth. In Tetrahymena thermophila, the gene SIT1 encodes for the Scramblase protein, whose functionality is Ca2+-dependent. In this experiment, the concentration of accessible Ca2+ ions was decreased in order to observe whether the change had an aect on the expression of SIT1 and cell growth. It was hypothesized that expression of the SIT1 gene would increase, while cell growth would decrease. To carry out the experiment ...


Neuronal Modulation Of Brown Adipose Activity Through Perturbation Of White Adipocyte Lipogenesis, Adilson L. Guilherme, David J. Pedersen, Felipe Henriques, Alexander H. Bedard, Elizabeth Henchey, Mark Kelly, Donald A. Morgan, Kamal Rahmouni, Michael P. Czech Jun 2018

Neuronal Modulation Of Brown Adipose Activity Through Perturbation Of White Adipocyte Lipogenesis, Adilson L. Guilherme, David J. Pedersen, Felipe Henriques, Alexander H. Bedard, Elizabeth Henchey, Mark Kelly, Donald A. Morgan, Kamal Rahmouni, Michael P. Czech

Open Access Articles

OBJECTIVE: Crosstalk between adipocytes and local neurons may be an important regulatory mechanism to control energy homeostasis. We previously reported that perturbation of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) expands sympathetic neurons within white adipose tissue (WAT) and stimulates the appearance of "beige" adipocytes. Here we tested whether WAT DNL activity can also influence neuronal regulation and thermogenesis in brown adipose tissue (BAT).

METHODS AND RESULTS: Induced deletion of FASN in all adipocytes in mature mice (iAdFASNKO) enhanced sympathetic innervation and neuronal activity as well as UCP1 expression in both WAT and BAT. This ...


Mechanisms Of Age-Related Prostate Growth And Tumorigenesis, Deon O'Bryant May 2018

Mechanisms Of Age-Related Prostate Growth And Tumorigenesis, Deon O'Bryant

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Prostate cancer is the most commonly diagnosed malignancy among men, but few genetic factors that drive prostate cancer initiation have been identified. The WD repeat domain 77 (Wdr77) protein is essential for cellular proliferation when it localizes in the cytoplasm of epithelial cells at the early stage of prostate development. In the adult prostate, it is transported into the nucleus and functions as a co-regulator of the androgen receptor to promote cellular differentiation and prostate function. This developmental process is reversed during prostate tumorigenesis i.e., Wdr77 is translocated from the nucleus into the cytoplasm to drive proliferation of prostate ...


Small Rnas Gained During Epididymal Transit Of Sperm Are Essential For Embryonic Development In Mice, Colin C. Conine, Fengyun Sun, Lina Song, Jaime A. Rivera-Perez, Oliver J. Rando Apr 2018

Small Rnas Gained During Epididymal Transit Of Sperm Are Essential For Embryonic Development In Mice, Colin C. Conine, Fengyun Sun, Lina Song, Jaime A. Rivera-Perez, Oliver J. Rando

University of Massachusetts Medical School Faculty Publications

The small RNA payload of mammalian sperm undergoes dramatic remodeling during development, as several waves of microRNAs and tRNA fragments are shipped to sperm during post-testicular maturation in the epididymis. Here, we take advantage of this developmental process to probe the function of the sperm RNA payload in preimplantation development. We generated zygotes via intracytoplasmic sperm injection (ICSI) using sperm obtained from the proximal (caput) vs. distal (cauda) epididymis, then characterized development of the resulting embryos. Embryos generated using caput sperm significantly overexpress multiple regulatory factors throughout preimplantation development, and subsequently implant inefficiently and fail soon after implantation. Remarkably, microinjection ...


Jip1-Mediated Jnk Activation Negatively Regulates Synaptic Plasticity And Spatial Memory, Caroline Morel, Tessi Sherrin, Norman J. Kennedy, Kelly H. Forest, Seda Barutcu, Michael Robles, Ezekiel Carpenter-Hyland, Naghum Alfulaij, Claire L. Standen, Robert A. Nichols, Morris Benveniste, Roger J. Davis, Cedomir Todorovic Apr 2018

Jip1-Mediated Jnk Activation Negatively Regulates Synaptic Plasticity And Spatial Memory, Caroline Morel, Tessi Sherrin, Norman J. Kennedy, Kelly H. Forest, Seda Barutcu, Michael Robles, Ezekiel Carpenter-Hyland, Naghum Alfulaij, Claire L. Standen, Robert A. Nichols, Morris Benveniste, Roger J. Davis, Cedomir Todorovic

University of Massachusetts Medical School Faculty Publications

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JIP1 scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDA receptor currents, increased NMDA receptor-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse ...


A Parental Requirement For Dual-Specificity Phosphatase 6 In Zebrafish, Jennifer M. Maurer, Charles G. Sagerstrom Mar 2018

A Parental Requirement For Dual-Specificity Phosphatase 6 In Zebrafish, Jennifer M. Maurer, Charles G. Sagerstrom

Open Access Articles

BACKGROUND: Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and ...


Targets And Functions Of The Microrna-200 Family In The Developing Skin And Hair Follicle, Jaimee Elizabeth Hoefert Jan 2018

Targets And Functions Of The Microrna-200 Family In The Developing Skin And Hair Follicle, Jaimee Elizabeth Hoefert

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

The microRNA-200 (miR-200) family is well known for preventing epithelial-to-mesenchymal transition in cancer. However, the targets and functions of this family in normal epithelial tissues remain unclear. This five-member microRNA (miRNA) family also presents a unique platform for studying miRNA-mediated regulation, as they share two nearly-identical seed sequences. The results presented within this dissertation establish a role for these miRNAs in governing hair follicle morphogenesis and fine-tuning cell specification by regulating cell adhesion, polarity, and signaling pathways. By directly ligating miRNAs to their targeted mRNA regions, numerous miR-200 family targets are identified, many of which are involved ...


Characterization Of A Mucopolysaccharidosis Type I And Galnac Transferase Deficiency Double Knockout Mouse, Karan Gera Jan 2018

Characterization Of A Mucopolysaccharidosis Type I And Galnac Transferase Deficiency Double Knockout Mouse, Karan Gera

Graduate Theses and Dissertations

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases (LSDs) which are characterized by the aberrant primary storage of glycosaminoglycans (GAGs) in lysosomes of multiple organ and tissue systems. The most commonly diagnosed is MPS Type I (MPS I), caused by mutations in the gene which codes for α-L-iduronidase (IDUA). Biochemically, MPS I is characterized by the aberrant primary lysosomal storage of incompletely degraded dermatan and heparan sulfates, along with a secondary accumulation of gangliosides and other compounds in lysosomes. Its clinical manifestation in severe form leads to early death, characterized by progressive central nervous system disease (with behavioral ...


Exploring The Role Of Tet1 In Genomic Imprinting, Jennifer Myers Sanmiguel Jan 2018

Exploring The Role Of Tet1 In Genomic Imprinting, Jennifer Myers Sanmiguel

Publicly Accessible Penn Dissertations

DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified ...


Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function, Alex Martin Rohacek Jan 2018

Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function, Alex Martin Rohacek

Publicly Accessible Penn Dissertations

Hearing loss is the most common form of congenital birth defect, affecting an estimated

35 million children worldwide. To date, nearly 100 genes have been identified which

contribute to a deafness phenotype in humans, however, many cases remain in which a

causative mutation has yet to be found. In addition, the exact mechanism by which

hearing loss occurs in the presence of many of these mutations is still not understood.

This is due, in part, to the complex nature of the development and function of the

cochlear duct, the organ of hearing. The cochlea undergoes an intricate morphogenetic

development and ...


Wnt Secretion Proteins Modulate Rankl-Induced Expression Of Aire In Thymic Epithelial Cells, Daniel Pollack Jan 2018

Wnt Secretion Proteins Modulate Rankl-Induced Expression Of Aire In Thymic Epithelial Cells, Daniel Pollack

Dissertations and Theses

Thymic epithelial cells (TEC) are essential for a proper adaptive immune response by regulating thymocyte development and establishing central tolerance. In the thymus, TECs differentially express Wnt proteins, which activate canonical and non-canonical Wnt signaling pathways. Wnt signaling is thought to regulate cell survival, proliferation, and development although the direct molecular mechanisms in TECs have yet to be elucidated. The inducible inhibition of canonical Wnt signaling with Dkk1 leads to a rapid loss of TEC progenitors as well as a decline in mature Aire-expressing mTECs. Therefore, we explore the role of Wnt ligands potentially responsible for stimulating and/or regulating ...


Temporal Regulation Of Chromatin During Myoblast Differentiation, Akihito Harada, Yasuyuki Ohkawa, Anthony N. Imbalzano Dec 2017

Temporal Regulation Of Chromatin During Myoblast Differentiation, Akihito Harada, Yasuyuki Ohkawa, Anthony N. Imbalzano

UMass Metabolic Network Publications

The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The ...


Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer Nov 2017

Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer

Jennifer Maurer


Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation.Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are ...


Xist Rna: A Window Into The Broader Role Of Rna In Nuclear Chromosome Architecture, Kevin Creamer, Jeanne B. Lawrence Nov 2017

Xist Rna: A Window Into The Broader Role Of Rna In Nuclear Chromosome Architecture, Kevin Creamer, Jeanne B. Lawrence

Open Access Articles

XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment ...


Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer Oct 2017

Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer

GSBS Dissertations and Theses

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are ...


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and ...


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

UT GSBS Dissertations and Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo.

In ...


Global Increase In Replication Fork Speed During A P57kip2-Regulated Erythroid Cell Fate Switch, Yung Hwang, Melinda Futran, Daniel Hidalgo, Ramona Pop, Divya Ramalingam Iyer, Ralph Scully, Nicholas R. Rhind, Merav Socolovsky May 2017

Global Increase In Replication Fork Speed During A P57kip2-Regulated Erythroid Cell Fate Switch, Yung Hwang, Melinda Futran, Daniel Hidalgo, Ramona Pop, Divya Ramalingam Iyer, Ralph Scully, Nicholas R. Rhind, Merav Socolovsky

Open Access Articles

Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase-dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a ...


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen is ...


Kat-Independent Gene Regulation By Tip60 Promotes Esc Self-Renewal But Not Pluripotency, Diwash Acharya, Sarah J. Hainer, Yeonsoo Yoon, Feng Wang, Ingolf Bach, Jaime A. Rivera-Perez, Thomas G. Fazzio Apr 2017

Kat-Independent Gene Regulation By Tip60 Promotes Esc Self-Renewal But Not Pluripotency, Diwash Acharya, Sarah J. Hainer, Yeonsoo Yoon, Feng Wang, Ingolf Bach, Jaime A. Rivera-Perez, Thomas G. Fazzio

Pediatric Publications and Presentations

Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function ...


Antisense Oligonucleotides Used To Target The Dux4 Mrna As Therapeutic Approaches In Faciosscapulohumeral Muscular Dystrophy (Fshd), Eugenie Ansseau, Celine Vanderplanck, Armelle Wauters, Scott Q. Harper, Frederique Coppee, Alexandra Belayew Mar 2017

Antisense Oligonucleotides Used To Target The Dux4 Mrna As Therapeutic Approaches In Faciosscapulohumeral Muscular Dystrophy (Fshd), Eugenie Ansseau, Celine Vanderplanck, Armelle Wauters, Scott Q. Harper, Frederique Coppee, Alexandra Belayew

Wellstone Center for FSHD Publications

FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally ...


A Microrna Family Exerts Maternal Control On Sex Determination In C. Elegans, Katherine Mcjunkin, Victor R. Ambros Feb 2017

A Microrna Family Exerts Maternal Control On Sex Determination In C. Elegans, Katherine Mcjunkin, Victor R. Ambros

Program in Molecular Medicine Publications and Presentations

Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding ...


Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

All Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z ...


Amplification Of Adipogenic Commitment By Vstm2a, Blandine Secco, Peter L. Lee, David A. Guertin, Mathieu Laplante Jan 2017

Amplification Of Adipogenic Commitment By Vstm2a, Blandine Secco, Peter L. Lee, David A. Guertin, Mathieu Laplante

UMass Metabolic Network Publications

Despite progress in our comprehension of the mechanisms regulating adipose tissue development, the nature of the factors that functionally characterize adipose precursors is still elusive. Defining the early steps regulating adipocyte development is needed for the generation of tools to control adipose tissue size and function. Here, we report the discovery of V-set and transmembrane domain containing 2A (VSTM2A) as a protein expressed and secreted by committed preadipocytes. VSTM2A expression is elevated in the early phases of adipogenesis in vitro and adipose tissue development in vivo. We show that VSTM2A-producing cells associate with the vasculature and express the common surface ...