Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

The P38 Mapk Pathway Is Essential For Skeletogenesis And Bone Homeostasis In Mice, Matthew B. Greenblatt, Jae-Hyuck Shim, Weiguo Zou, Despina Sitara, Michelle Schweitzer, Dorothy Hu, Sutada Lotinun, Yasuyo Sano, Roland Baron, Jin Mo Park, Simon Arthur, Min Xie, Michael D. Schneider, Bo Zhai, Steven Gygi, Roger J. Davis, Laurie H. Glimcher Jul 2010

The P38 Mapk Pathway Is Essential For Skeletogenesis And Bone Homeostasis In Mice, Matthew B. Greenblatt, Jae-Hyuck Shim, Weiguo Zou, Despina Sitara, Michelle Schweitzer, Dorothy Hu, Sutada Lotinun, Yasuyo Sano, Roland Baron, Jin Mo Park, Simon Arthur, Min Xie, Michael D. Schneider, Bo Zhai, Steven Gygi, Roger J. Davis, Laurie H. Glimcher

Davis Lab Publications

Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member-encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-beta-activated kinase 1 (TAK1; also known ...


Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman May 2010

Determination Of The Myogenic Potential Of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells, Rory Coleman

Honors Scholar Theses

Human embryonic stem cells (hESCs) have the potential to

differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and ...


Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse May 2010

Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse

UT GSBS Dissertations and Theses (Open Access)

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through ...


Reverse Genetic And Cell Biological Approaches To The Study Of Developmental Functions Of Class Xi Myosin In Arabidopsis Thaliana, Eunsook Park Mar 2010

Reverse Genetic And Cell Biological Approaches To The Study Of Developmental Functions Of Class Xi Myosin In Arabidopsis Thaliana, Eunsook Park

Doctoral Dissertations

Myosin proteins function as molecular motors that drive the ATP-dependent movement of cellular components along actin filaments. Vascular plants encode two different types of myosin, referred to as class VIII and class XI. Although class XI myosins have been suggested to function in organelle movement and cytoplasmic streaming, little is known about their cellular function in detail.

The Arabidopsis genome encodes 13 class XI myosin genes. The reasons for the relatively large number of myosin XI isoforms present within a single plant species are unknown. To investigate the function of these gene products in the cell, we determined the spatial ...