Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer Nov 2017

Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer

Jennifer Maurer


Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation.Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are …


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

Dissertations & Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo. …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We …


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto Jan 2017

Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto

Biology Faculty Publications

The embryonic chick has long been a favorite model system for in vivo studies of vertebrate development. However, a major technical limitation of the chick embryo has been the lack of efficient loss-of-function approaches for analyses of gene functions. Here, we describe a methodology in which a transgene encoding artificial microRNA sequences is introduced into embryonic chick retinal cells by in ovo electroporation and integrated into the genome using the Tol2 transposon system. We show that this methodology can induce potent and stable suppression of gene expression. This technique therefore provides a rapid and robust loss-of-function approach for studies of …