Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 121 - 150 of 1886

Full-Text Articles in Mechanical Engineering

Anisotropic Third-Harmonic Generation Of Exfoliated As2s3 Thin Flakes, Ravi P.N. Tripathi, Xiaodong Yang, Jie Gao Jun 2022

Anisotropic Third-Harmonic Generation Of Exfoliated As2s3 Thin Flakes, Ravi P.N. Tripathi, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Van der Waals (vdW) materials have recently attracted significant interest in the context of orientation-dependent linear and nonlinear optical properties. Recently, arsenic trisulfide (As2S3) or orpiment is identified as a new vdW layered material having anisotropic vibrational and optomechanical responses due to the reduced in-plane crystal symmetry, but its nonlinear optical response is still not well understood yet. Herein, the anisotropic third-harmonic generation (THG) response of mechanically exfoliated As2S3 thin flakes is reported. The polarization-dependent evolution of THG emission from butterfly-shaped pattern to four-lobe pattern is comprehensively explored. Moreover, the third-order nonlinear susceptibility of As2S3 crystal is extracted by analyzing …


Laser-Scribed Conductive, Photoactive Transition Metal Oxide On Soft Elastomers For Janus On-Skin Electronics And Soft Actuators, Ganggang Zhao, Yun Ling, Yajuan Su, Zanyu Chen, Cherian J. Mathai, Ogheneobarome Emeje, Alexander Brown, Dinesh Reddy Alla, Jie Huang, Chansong Kim, Qian Chen, Xiaoqing He, David Stalla, Yadong Xu Jun 2022

Laser-Scribed Conductive, Photoactive Transition Metal Oxide On Soft Elastomers For Janus On-Skin Electronics And Soft Actuators, Ganggang Zhao, Yun Ling, Yajuan Su, Zanyu Chen, Cherian J. Mathai, Ogheneobarome Emeje, Alexander Brown, Dinesh Reddy Alla, Jie Huang, Chansong Kim, Qian Chen, Xiaoqing He, David Stalla, Yadong Xu

Electrical and Computer Engineering Faculty Research & Creative Works

Laser-assisted fabrication of conductive materials on flexible substrates has attracted intense interests because of its simplicity, easy customization, and broad applications. However, it remains challenging to achieve laser scribing of conductive materials on tissue-like soft elastomers, which can serve as the basis to construct bioelectronics and soft actuators. Here, we report laser scribing of metallic conductive, photoactive transition metal oxide (molybdenum dioxide) on soft elastomers, coated with molybdenum chloride precursors, under ambient conditions. Laser-scribed molybdenum dioxide (LSM) exhibits high electrical conductivity, biocompatibility, chemical stability, and compatibility with magnetic resonance imaging. In addition, LSM can be made on various substrates (polyimide, …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti–Ni–Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti–Ni–Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallic. A bonding strength of 569.1 MPa was obtained …


Dual-Band Selective Circular Dichroism In Mid-Infrared Chiral Metasurfaces, Haotian Tang, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, Jie Gao May 2022

Dual-Band Selective Circular Dichroism In Mid-Infrared Chiral Metasurfaces, Haotian Tang, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Most chiral metamaterials and meta surfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral meta surface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral meta surface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. …


Natural Layered Mercury Antimony Sulfosalt Livingstonite With Anisotropic Optical Properties, Ravi P.N. Tripathi, Jie Gao, Xiaodong Yang May 2022

Natural Layered Mercury Antimony Sulfosalt Livingstonite With Anisotropic Optical Properties, Ravi P.N. Tripathi, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Naturally occurring layered mineral livingstonite is identified as a new type of van der Waals (vdW) heterostructure based 2D material, consisting of two commensurately modulated alternating layers of HgSb2S4 and Sb2S4. The heterostructures of livingstonite crystal are prepared as thin flakes via mechanical exfoliation method. The prepared livingstonite crystals are further investigated in the context of vibrational, linear, and nonlinear optical properties, including anisotropic Raman scattering, wavelength-dependent linear dichroism (LD) transition effect, birefringence, and anisotropic third-harmonic generation (THG). Owing to the monoclinic crystal structure, livingstonite crystals exhibit strong anisotropic vibrational and optical responses. In contrast to conventional vdW heterostructures, the …


Updates And Improvements To The Satellite Drag Coefficient Response Surface Modeling Toolkit, Phillip Logan Sheridan, Smriti Nandan Paul, Guillermo Avendaño-Franco, Piyush M. Mehta May 2022

Updates And Improvements To The Satellite Drag Coefficient Response Surface Modeling Toolkit, Phillip Logan Sheridan, Smriti Nandan Paul, Guillermo Avendaño-Franco, Piyush M. Mehta

Mechanical and Aerospace Engineering Faculty Research & Creative Works

For satellites in the Low Earth Orbit (LEO) region, the drag coefficient is a primary source of uncertainty for orbit determination and prediction. Researchers at the Los Alamos National Laboratory (LANL) have created the so-called Response Surface Modeling (RSM) toolkit to provide the community with a resource for simulating and modeling satellite drag coefficients for satellites with complex geometries (modeled using triangulated facets) in the free molecular flow (FMF) regime. The toolkit fits an interpolation surface using non-parametric Gaussian Process Regression (GPR) over drag coefficient data computed using the numerical Test Particle Monte Carlo (TPMC) method. The fitted response surface …


Interpolation And Extrapolation Of Optimally Fitted Kinematic Error Model For Five-Axis Machine Tools, Le Ma, Douglas A. Bristow, Robert G. Landers May 2022

Interpolation And Extrapolation Of Optimally Fitted Kinematic Error Model For Five-Axis Machine Tools, Le Ma, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machine tool geometric errors are frequently corrected by populating compensation tables that contain position-dependent offsets to each commanded axis position. While each offset can be determined by directly measuring the individual geometric error at that location, it is often more efficient to compute the compensation using a volumetric error model derived from measurements across the entire axis space. However, interpolation and extrapolation of measurements, once explicit in direct measurement methods, become implicit and obfuscated in the curve-fitting process of volumetric error methods. The drive to maximize model accuracy while minimizing measurement sets can lead to significant model errors in workspace …


Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers: Effect Of Spatial Evolution And Reynolds Number, Junji Huang, Lian Duan, Meelan M. Choudhari Apr 2022

Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers: Effect Of Spatial Evolution And Reynolds Number, Junji Huang, Lian Duan, Meelan M. Choudhari

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains (Formula Presented, with Formula Presented the inflow boundary-layer thickness) at three different Mach numbers, Formula Presented, Formula Presented and Formula Presented, with the surface temperatures ranging from Quasi adiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is …


Information-Based Particle Flow With Convergence Control, Kari C. Ward, Kyle J. Demars Apr 2022

Information-Based Particle Flow With Convergence Control, Kari C. Ward, Kyle J. Demars

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A new formulation of the Gaussian particle flow filter is presented using an information theoretic approach. The developed information-based form advances the Gaussian particle flow framework in two ways: it imparts physical meaning to the flow dynamics and provides the ability to easily include modifications for a non-Bayesian update. An orbit determination simulation with high initial uncertainty is used to demonstrate the consistent, robust performance of the information flow filter in situations where the extended Kalman filter fails.


Local Prediction Of Laser Powder Bed Fusion Porosity By Short-Wave Infrared Imaging Thermal Feature Porosity Probability Maps, Cody S. Lough, Tao Liu, Xin Wang, Ben Brown, Robert G. Landers, Douglas A. Bristow, James A. Drallmeier, Edward C. Kinzel Apr 2022

Local Prediction Of Laser Powder Bed Fusion Porosity By Short-Wave Infrared Imaging Thermal Feature Porosity Probability Maps, Cody S. Lough, Tao Liu, Xin Wang, Ben Brown, Robert G. Landers, Douglas A. Bristow, James A. Drallmeier, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Local thermal history can significantly vary in parts during metal Additive Manufacturing (AM), leading to local defects. However, the sequential layer-by-layer nature of AM facilitates in-situ part voxelmetric observations that can be used to detect and correct these defects for part qualification and quality control. The challenge is to relate this local radiometric data with local defect information to estimate process error likelihood in future builds. This paper uses a Short-Wave Infrared (SWIR) camera to record the temperature history for parts manufactured with Laser Powder Bed Fusion (LPBF) processes. The porosity from a cylindrical specimen is measured by ex-situ micro-computed …


Evolution Of High-Frequency Instabilities In The Presence Of Azimuthally Compact Crossflow Vortex Pattern Over A Yawed Cone, Meelan Choudhari, Fei Li, Pedro Paredes, Lian Duan Apr 2022

Evolution Of High-Frequency Instabilities In The Presence Of Azimuthally Compact Crossflow Vortex Pattern Over A Yawed Cone, Meelan Choudhari, Fei Li, Pedro Paredes, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Hypersonic boundary-layer flows over a circular cone at a moderate yaw angle can support strong crossflow instability away from the windward and leeward rays on the plane of symmetry. Due to the more efficient excitation of stationary crossflow vortices by surface roughness, a possible path to transition in such flows corresponds to rapid amplification of the high-frequency instabilities sustained in the presence of finite amplitude stationary crossflow vortices. This paper presents a computational analysis of crossflow instability over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Specifically, the nonlinear evolution of an azimuthally localized crossflow vortex …


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao Mar 2022

Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed …


Pedagogical Approaches For Facilitating Engineering Leadership Development, Teresa J. Didiano, Annie E. Simpson, David J. Bayless Mar 2022

Pedagogical Approaches For Facilitating Engineering Leadership Development, Teresa J. Didiano, Annie E. Simpson, David J. Bayless

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This article describes transformative, impactful pedagogical practices that engage students in the process of leadership development. We share practical examples of instructional strategies and facilitation techniques from curricular and co-curricular initiatives.


Component Repair Using Additive Manufacturing: Experiments And Thermal Modeling, Lan Li, Xinchang Zhang, Tan Pan, Frank W. Liou Mar 2022

Component Repair Using Additive Manufacturing: Experiments And Thermal Modeling, Lan Li, Xinchang Zhang, Tan Pan, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The objective of this work is to propose an advanced automated damage detection and damage reconstruction algorithm for damaged gear tooth repair. It can automate tool path design and provide precise repair volume detection for complex repair volume. First, models of the damaged and nominal parts were obtained by reverse engineering. Next, the damaged model was aligned with the nominal model. After that, both models were sliced into layers, and a set of parallel and equidistant casting rays was used to intersect with these layers to extract the repair volume. Then the repair tool path was generated and used to …


Molecular Simulation Of Steady-State Evaporation And Condensation Of Water In Air, Eric Bird, Jesus Gutierrez Plascencia, Pawel Keblinski, Zhi Liang Mar 2022

Molecular Simulation Of Steady-State Evaporation And Condensation Of Water In Air, Eric Bird, Jesus Gutierrez Plascencia, Pawel Keblinski, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It Was Shown in Recent Experiments and Molecular Dynamics (MD) Simulations that Schrage Equation Predicts Evaporation and Condensation Rates of Water in the Absence of a Non-Condensable Gas with Good Accuracy. However, It is Not Clear Whether Schrage Equation is Still Accurate or Even Valid for Quantifying Water Evaporation and Condensation Rates in Air. in This Work, We Carry Out MD Simulations to Study Steady-State Evaporation and Condensation of Water at a Planar Water-Air Interface. the Simulation Results Show that the Evaporation and Condensation Fluxes of Water in the Presence of Air Are Still in a Good Agreement with the …


Investigation Of Mechanical Properties Of Parts Fabricated With Gas- And Water-Atomized 304l Stainless Steel Powder In The Laser Powder Bed Fusion Process, M. Hossein Sehhat, Austin T. Sutton, Chia Hung Hung, Joseph William Newkirk, Ming-Chuan Leu Mar 2022

Investigation Of Mechanical Properties Of Parts Fabricated With Gas- And Water-Atomized 304l Stainless Steel Powder In The Laser Powder Bed Fusion Process, M. Hossein Sehhat, Austin T. Sutton, Chia Hung Hung, Joseph William Newkirk, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

The use of gas-atomized powder as the feedstock material for the laser powder bed fusion (LPBF) process is common in the additive manufacturing (AM) community. Although gas-atomization produces powder with high sphericity, its relatively expensive production cost is a downside for application in AM processes. Water atomization of powder may overcome this limitation due to its low-cost relative to the gas-atomization process. In this work, gas- and water-atomized 304L stainless steel powders were morphologically characterized through scanning electron microscopy (SEM). The water-atomized powder had a wider particle size distribution and exhibited less sphericity. Measuring powder flowability using the Revolution Powder …


Effect Of Processing Parameters And Build Orientation On Microstructure And Performance Of Aisi Stainless Steel 304l Made With Selective Laser Melting Under Different Strain Rates, Tan Pan, Xinchang Zhang, Aaron Flood, Sreekar Karnati, Wei Li, Joseph William Newkirk, Frank W. Liou Feb 2022

Effect Of Processing Parameters And Build Orientation On Microstructure And Performance Of Aisi Stainless Steel 304l Made With Selective Laser Melting Under Different Strain Rates, Tan Pan, Xinchang Zhang, Aaron Flood, Sreekar Karnati, Wei Li, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Selective laser melting (SLM) process allows greater geometry flexibility; therefore, it has become more widespread in its deployment in the industry for fabricating metal alloys. However, a material characterization study is needed in order to understand better the correlation between the process, microstructure, and performance. In the current study, the raw SLM fabricated AISI stainless steel 304 L was fabricated with different processing parameters and build orientations (horizontal, inclined, and vertical). The tensile behavior was evaluated under different strain rates (0.0001/s, 0.001/s, 0.01/s, and 0.1/s) and then compared to commercial cold-rolled and annealed counterparts. Grain structures, tensile strength, elongation-to-failure, strain …


Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts Feb 2022

Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

These data were acquired to estimate the parameters of a closed form solution of a one-dimensional transient convection heat diffusion PDE. The purpose was to demonstrate that the model could be used to determine the thermal conductivity. The system was tested for a wide range of thermal conductivity, 15-400 W/mK, in order to verify that the method was applicable for various materials. The data reported here refer to the study in the research articles, “Material Thermal Properties Estimation Via a One-Dimensional Transient Convection Model” and “Influence of porosity on the thermal, electrical, and mechanical performance of selective laser melted stainless …


Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen Feb 2022

Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by …


Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts Feb 2022

Data On The Validation To Determine The Material Thermal Properties Estimation Via A One-Dimensional Transient Convection Model, Lauren B. Tomanek, Daniel S. Stutts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

These data were acquired to estimate the parameters of a closed form solution of a one-dimensional transient convection heat diffusion PDE. The purpose was to demonstrate that the model could be used to determine the thermal conductivity. The system was tested for a wide range of thermal conductivity, 15-400 W/mK, in order to verify that the method was applicable for various materials. The data reported here refer to the study in the research articles, "Material Thermal Properties Estimation Via a One-Dimensional Transient Convection Model" [1] and "Influence of porosity on the thermal, electrical, and mechanical performance of selective laser melted …


Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen Feb 2022

Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by …


Two-Level Targeter Convergence Study For Collinear Libration Point Spacecraft Formations, Donna Jennings, Henry J. Pernicka Jan 2022

Two-Level Targeter Convergence Study For Collinear Libration Point Spacecraft Formations, Donna Jennings, Henry J. Pernicka

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spacecraft formation flying has attracted an increasing amount attention over the past several decades including a growing interest in relative motion at the collinear lib ration points. This current work builds on previous efforts by further developing and characterizing a two-level targeting (TLT) algorithm used to determine relative motion at lib ration points by performing a convergence study. A parametric study was conducted to identify the sensitivity of the algorithm to a variety of inputs and constraints. The parametric study revealed that the two-level targeting algorithm convergence properties significantly improve when using a higher order initialization estimate. The size of …


Fuel-Rich Hetero-/Homogeneous Combustion Of C3h8/O2/N2 Mixtures Over Rhodium, John Mantzaras, Ran Sui, Rolf Bombach Jan 2022

Fuel-Rich Hetero-/Homogeneous Combustion Of C3h8/O2/N2 Mixtures Over Rhodium, John Mantzaras, Ran Sui, Rolf Bombach

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The catalytic (heterogeneous) and gas-phase (homogeneous) combustion of C3H8/O2/N2 mixtures over rhodium was investigated experimentally and numerically at 5 bar and at fuel-rich equivalence ratios π = 2.0-3.5 relevant to propane Catalytic Partial Oxidation (CPO). In situ spatially-resolved Raman measurements of major gas-phase species concentrations and Planar Laser Induced Fluorescence (PLIF) of formaldehyde were applied in an optically accessible channel-flow reactor to monitor the catalytic and gas-phase processes, respectively, while accompanying 2D simulations were carried out with detailed hetero-/homogeneous chemical reaction mechanisms. Due to the high gas-phase reactivity of propane, homogeneous chemistry could not be ignored over most of the …


Regulation Of Dendrite-Free Li Plating Via Lithiophilic Sites On Lithium-Alloy Surface, Yufang He, Mengyun Zhang, Aiping Wang, Bo Zhang, Hiep Pham, Qiao Hu, Li Sheng, Hong Xu, Li Wang, Jonghyun Park, Xiangming He Jan 2022

Regulation Of Dendrite-Free Li Plating Via Lithiophilic Sites On Lithium-Alloy Surface, Yufang He, Mengyun Zhang, Aiping Wang, Bo Zhang, Hiep Pham, Qiao Hu, Li Sheng, Hong Xu, Li Wang, Jonghyun Park, Xiangming He

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lithium (Li) deposition behavior plays an important role in dendrite formation and the subsequent performance of lithium metal batteries. This work reveals the impact of the lithiophilic sites of lithium-alloy on the Li plating process via the first-principles calculations. We find that the Li deposition mechanisms on the Li metal and Li22Sn5 surface are different due to the lithiophilic sites. We first propose that Li plating on the Li metal surface goes through the "adsorption-reduction-desorption-heterogeneous nucleation-cluster drop "process, while it undergoes the "adsorption-reduction-growth "process on the Li22Sn5 surface. The lower adsorption energy contributes to the easy adsorption of Li on …


Neural Network Attitude Control System Design For The Wallops Arc-Second Pointer, Pavel Galchenko, Henry J. Pernicka Jan 2022

Neural Network Attitude Control System Design For The Wallops Arc-Second Pointer, Pavel Galchenko, Henry J. Pernicka

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Passive Intermodulation Under Different Spring Contact Conditions, Shengxuan Xia, Emmanuel Olugbade, Yuchu He, Yansheng Wang, Hanfeng Wang, Krishna Rao, Marco Poort, Haicheng Zhou, Warren Lee, Nicholas Mcdonnell, Jonghyun Park, Chulsoon Hwang Jan 2022

Passive Intermodulation Under Different Spring Contact Conditions, Shengxuan Xia, Emmanuel Olugbade, Yuchu He, Yansheng Wang, Hanfeng Wang, Krishna Rao, Marco Poort, Haicheng Zhou, Warren Lee, Nicholas Mcdonnell, Jonghyun Park, Chulsoon Hwang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Modularized designs have been widely used in today's consumer electronic devices and flexible RF springs are used for electrical connections between the modules. In the meantime, aluminum alloy material becomes a common chassis option. It is well known that the oxidized chassis surface introduces a certain level of nonlinearity when contacted by the springs, as known as passive intermodulation (PIM). PIM is one of the well-known root causes of the RF desensitization (desense). This paper is focused on investigating the relationship between PIM and contact conditions of the springs, especially contact area. The PIM level behavior is explained mathematically by …


Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Jan 2022

Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to the high cost, complex preparation process and difficulty in structural design, the traditional methods for carbon fiber reinforced SiC ceramic composite preparation have great limitations. This paper presents a technique for the additive manufacturing multiple continuous carbon fiber bundle-reinforced SiC ceramic composite with core-shell structure using an extrusion-based technique. A conventional nozzle system was modified to print simultaneously a water based SiC paste with continuous carbon fibers. Different levels of binder contents were investigated to optimize the stickiness, viscosity, thixotropy and viscoelasticity of the paste. After sintering, SiC whiskers were generated on the surface of fiber, which is …


Jointly-Learnt Networks For Future Action Anticipation Via Self-Knowledge Distillation And Cycle Consistency, Md Moniruzzaman, Zhaozheng Yin, Zhihai He, Ming-Chuan Leu, Ruwen Qin Jan 2022

Jointly-Learnt Networks For Future Action Anticipation Via Self-Knowledge Distillation And Cycle Consistency, Md Moniruzzaman, Zhaozheng Yin, Zhihai He, Ming-Chuan Leu, Ruwen Qin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Future action anticipation aims to infer future actions from the observation of a small set of past video frames. In this paper, we propose a novel Jointly learnt Action Anticipation Network (J-AAN) via Self-Knowledge Distillation (Self-KD) and cycle consistency for future action anticipation. In contrast to the current state-of-the-art methods which anticipate the future actions either directly or recursively, our proposed J-AAN anticipates the future actions jointly in both direct and recursive ways. However, when dealing with future action anticipation, one important challenge to address is the future's uncertainty since multiple action sequences may come from or be followed by …


Spatial Transformation Of A Layer-To-Layer Control Model For Selective Laser Melting, Xin Wang, Robert G. Landers, Douglas A. Bristow Jan 2022

Spatial Transformation Of A Layer-To-Layer Control Model For Selective Laser Melting, Xin Wang, Robert G. Landers, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective Laser Melting (SLM) is an Additive Manufacturing (AM) technique with challenges in its complexity of process parameters and lack of control schemes. Traditionally, people tried time-domain or frequency-domain control methods, but the complexity of the process goes beyond these methods. In this paper, a novel spatial transformation of SLM models is proposed, which transforms the time-domain process into a spatial domain model and, thus, allows for state-space layer-to-layer control methods. In a space domain, this also provides the convenience of modelling laser path changes. Finally, a layer-to-layer Iterative Learning Control (ILC) method is designed and demonstrates the methodology of …