Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira Oct 2008

High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant ...


Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow Jun 2008

Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this work we examine the performance of iterative learning control (ILC) for systems with non-repeating disturbances and random noise. Single-input, single- output linear time-invariant systems and iteration-invariant learning filters are considered. We find that a tradeoff exists between the convergence rate and converged error spectrum. Optimal filter designs, which are dependant on the disturbance and noise spectra, are developed. We also present simple design guidelines for the case when explicit models of disturbance and noise spectra are not available. A numerical design example is presented.


Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow Jun 2008

Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper we examine the robustness of norm optimal ILC with quadratic cost criterion for discrete-time, linear time-invariant, single-input single-output systems. A bounded multiplicative uncertainty model is used to describe the uncertain system and a sufficient condition for robust monotonic convergence is developed. We find that, for sufficiently large uncertainty, the performance weighting can not be selected arbitrarily large, and thus overall performance is limited. To maximize available performance, a time-frequency design methodology is presented to shape the weighting matrix based on the initial tracking error. The design is applied to a nanopositioning system and simulation results are presented.


Monotonic Convergence Of Iterative Learning Control For Uncertain Systems Using A Time-Varying Filter, Douglas A. Bristow, Andrew G. Alleyne Mar 2008

Monotonic Convergence Of Iterative Learning Control For Uncertain Systems Using A Time-Varying Filter, Douglas A. Bristow, Andrew G. Alleyne

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Iterative learning control (ILC) is a learning technique used to improve the performance of systems that execute the same task multiple times. Learning transient behavior has emerged as an important topic in the design and analysis of ILC systems. In practice, the learning control is often low-pass filtered with a ldquoQ-filterrdquo to prevent transient growth, at the cost of performance. In this note, we consider linear time-invariant, discrete-time, single-input single-output systems, and convert frequency-domain uncertainty models to a time-domain representation for analysis. We then develop robust monotonic convergence conditions, which depend directly on the choice of the Q-filter and are ...


Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule ...


Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan Jan 2006

Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A reconfigurable flight control method is developed to be implemented on an Unmanned Aircraft (UA), a thirty percent scale model of the Cessna 150. This paper presents the details of the UA platform, system identification, reconfigurable controller design, development, and implementation on the UA to analyze the performance metrics. A Crossbow Inertial Measurement Unit provides the roll, pitch, and yaw accelerations and rates along with the roll and pitch. The 100-400 mini-air data boom from SpaceAge Control provides the airspeed, altitude, angle of attack, and the side slip angles. System identification is accomplished by commanding preprogrammed inputs to the control ...


Adaptive Critic Based Neurocontroller For Autolanding Of Aircraft With Varying Glideslopes, Gaurav Saini, S. N. Balakrishnan Jan 1997

Adaptive Critic Based Neurocontroller For Autolanding Of Aircraft With Varying Glideslopes, Gaurav Saini, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, adaptive critic based neural networks have been used to design a controller for a benchmark problem in aircraft autolanding. The adaptive critic control methodology comprises successive adaptations of two neural networks, namely `action' and `critic' networks until closed loop optimal control is achieved. The autolanding problem deals with longitudinal dynamics of an aircraft which is to be landed in a specified touchdown region in the presence of wind disturbances and gusts using elevator deflection as the control for glideslope and flare modes. The performance of the neurocontroller is compared to that of a conventional PID controller. Neurocontroller ...


Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger Jul 1992

Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Control of a nine-stage three-component distillation column is considered. The control objective is achieved using a neural estimator and a neural controller. The neural estimator is trained to represent the chemical process accurately, and the neural controller is trained to give an input to the chemical process which will yield the desired output. Training of both the neural networks is accomplished using a recursive least squares training algorithm implemented on an Intel iPSC/2 multicomputer (hypercube). Simulated results are presented for a numerical example.


Intelligent Control Of A Robotic Arm Using Hierarchical Neural Network Systems, Xavier J. R. Avula, Luis C. Rabelo Jan 1991

Intelligent Control Of A Robotic Arm Using Hierarchical Neural Network Systems, Xavier J. R. Avula, Luis C. Rabelo

Chemical and Biochemical Engineering Faculty Research & Creative Works

Two artificial neural network systems are considered in a hierarchical fashion to plan the trajectory and control of a robotic arm. At the higher level of the hierarchy the neural system consists of four networks: a restricted Coulomb energy network to delineate the robot arm workspace; two standard backpropagation (BP) networks for coordinates transformation; and a fourth network which also uses BP and participates in the trajectory planning by cooperating with other knowledge sources. The control emulation process which is developed using a second neural system at a lower hierarchical level provides the correct sequence of control actions. An example ...


Parallel Implementation Of A Recursive Least Squares Neural Network Training Method On The Intel Ipsc/2, James Edward Steck, Bruce M. Mcmillin, K. Krishnamurthy, M. Reza Ashouri, Gary G. Leininger Jun 1990

Parallel Implementation Of A Recursive Least Squares Neural Network Training Method On The Intel Ipsc/2, James Edward Steck, Bruce M. Mcmillin, K. Krishnamurthy, M. Reza Ashouri, Gary G. Leininger

Computer Science Faculty Research & Creative Works

An algorithm based on the Marquardt-Levenberg least-square optimization method has been shown by S. Kollias and D. Anastassiou (IEEE Trans. on Circuits Syst. vol.36, no.8, p.1092-101, Aug. 1989) to be a much more efficient training method than gradient descent, when applied to some small feedforward neural networks. Yet, for many applications, the increase in computational complexity of the method outweighs any gain in learning rate obtained over current training methods. However, the least-squares method can be more efficiently implemented on parallel architectures than standard methods. This is demonstrated by comparing computation times and learning rates for the ...