Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 477

Full-Text Articles in Mechanical Engineering

Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri Jan 2019

Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri

Masters Theses

"Can additional information about one's body kinematics provided through hands improve human balance? Light-Touch (LT) through hands helps improve balance in a wide range of populations, both healthy and impaired. The force is too small to provide any meaningful mechanical assistance -- rather, it is suggested that the additional sensory information through hands helps the body improve balance.

To investigate the potential for improving human balance through biofeedback through hands, we developed a Virtual Cane (VC) for balance assistance during standing. The VC mimics the physical cane's function of providing information about one's body in space. Balance experiments ...


Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li Jan 2019

Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li

Doctoral Dissertations

"The application of metallic glasses has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. In addition, joining metallic glass to crystalline metal is of interest for many applications that require locally tailored functions and properties, but it is challenging. This research describes a promising additive manufacturing technology, i.e., laser-foil-printing, to make high-quality metallic glass parts with large dimensions and complex geometries and to fabricate multi-material components from metallic glass and crystalline metal. In this research, Zr52.5Ti5Al10Ni ...


Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu Jan 2019

Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu

Doctoral Dissertations

"Engineers always encounter time-dependent uncertainties that ubiquitously exist, such as the random deterioration of material properties and time-variant loads. Therefore the reliability of engineering systems becomes time-dependent. It is crucial to predict the time-dependent reliability in the design stage, given possible catastrophic consequences of a failure. Although extensive research has been conducted on reliability analysis, estimating the reliability accurately and efficiently is still challenging. The objective of this work is to develop accurate and efficient reliability methodologies for engineering design. The basic idea is the integration of traditional reliability methods with saddlepoint approximation (SPA), which can accurately approximate the tail ...


Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited ...


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig Jan 2019

Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig

Doctoral Dissertations

"A new Li-ion battery electrode manufacturing process using a solvent free additive manufacturing method has been developed. Li-ion battery electrodes consist of active material particles, a binder additive, and a conductive additive. Traditionally, Li-ion battery electrodes are manufacturing using the "slurry casting" technique. In this method, the electrode materials are mixed with a solvent to create a slurry. Electrodes fabricated in this method are readily implemented for small platforms, such as portable electronics. However, this method isn't as economically viable in large platforms due to high material and manufacturing costs. High material and manufacturing costs are mostly attributed to ...


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids loading ...


Controlling Phase Fractions Of 304l-Ss In Selective Laser Melting Using Cooling Rate, Eberechukwu Anthony Okoro Jan 2018

Controlling Phase Fractions Of 304l-Ss In Selective Laser Melting Using Cooling Rate, Eberechukwu Anthony Okoro

Masters Theses

"This study examines the thermal profile and the ferrite-austenite phase fractions upon heating and cooling of 304- stainless steel powder via Selective Laser Melting (SLM). Experiments were performed to validate the ABAQUS finite element model, while the phase transformation simulation was performed using MatCalc and ThermoCalc. A correlation between the thermo-mechanical changes in ABAQUS and the microstructural changes from MatCalc was obtained by matching their cooling rates. The result indicates that cooling rate has a significant effect on the phase fractions of FCC and BCC formed in 304L stainless steel via the SLM process. The results also indicate that for ...


Computational Investigation Of Polymer Electrolyte Membrane Fuel Cell With Nature-Inspired Fibonacci Spiral Flow Field, Suleyman Kose Jan 2018

Computational Investigation Of Polymer Electrolyte Membrane Fuel Cell With Nature-Inspired Fibonacci Spiral Flow Field, Suleyman Kose

Masters Theses

"Polymer electrolyte membrane fuel cells (PEMFC) are promising clean energy devices. The flow field design has crucial role in PEMFC performance for effective distribution of reactants and removal of products. Several nature-inspired flow field designs have recently been proposed in the literature. Common characteristics of these designs were sudden changes in the flow direction through sharp bends and flow field geometries restrained to areas having corners. In this thesis, Fibonacci spiral configuration, which is found in the nature from hurricanes to seashells, was considered for flow field pattern of a PEMFC. Contrary to the bio-inspired designs proposed in previous studies ...


Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari Jan 2018

Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari

Masters Theses

"The use of microfluidics to transfer fluids without applying any exterior energy source is a promising technology in different fields of science and engineering due to their compactness, simplicity and cost-effective design. In geotechnical engineering, to increase the soil's strength, hydrophilic wicking fibers as type of microfluidics have been employed to transport and drain water out of soil spontaneously by taking advantage of natural capillary force without using any pumps or other auxiliary devices. The objective of this study is to understand the scientific mechanisms of the capability for wicking fiber to drain both gravity and capillary water out ...


Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini Jan 2018

Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini

Masters Theses

"This study investigates the information provided by Light Touch (LT) in improving human postural stability without mechanical assistance. Light Touch, an interaction force with a magnitude about 1 N, is known to improve postural stability in humans during quiet standing. However, the nature of the information from LT that helped improve balance is yet unknown. In this work, we hypothesized that LT provides information about one's body kinematics. We used a haptic robot to provide modulated, measurable light interaction force on the high back haptic location of humans to provide body kinematics-dependent information through LT. Standing balance experiments were ...


Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka Jan 2018

Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka

Masters Theses

"Optical fiber sensors embedded in metals with distributed sensing can sense temperature at multiple points with single fiber. This is useful for smart manufacturing like structural health monitoring in aerospace industry and smart molds in manufacturing plants. There is a huge difference in thermal coefficient of expansion for fiber and metal. This is the reason for the increase in sensitivity for embedded fiber sensors. However, at high temperatures, the stress on the fiber increases, eventually damaging the sensor. The fiber-metal interface determines the sensor performance. A tight interface results in high sensitivity and a gap in the interface enhances sensing ...


Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen Jan 2018

Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen

Doctoral Dissertations

"Over the past decades of years, a great deal of money has been spent to machine large and complex parts from high-performance metals (i.e., titanium components for aerospace applications), so users attempt to circumvent the high cost of materials. Laser metal deposition (LMD) is an additive manufacturing technique capable of fabricating complicated structures with superior properties. This dissertation aims to improve the applications of LMD technique for manufacturing metallic components by using various elemental powder mixture according to the following three categories of research topics. The first research topic is to investigate and develop a cost-effective possibility by using ...


Laser Foil Printing And Surface Polishing Processes, Chen Chen Jan 2018

Laser Foil Printing And Surface Polishing Processes, Chen Chen

Doctoral Dissertations

"A foil-based additive manufacturing technology for fabricating metal parts, called Laser Foil Printing (LFP), was proposed and developed in this dissertation. The manufacturing sub-processes comprising the LFP technology were comprehensively studied, which include the laser spot welding of foil, laser raster-scan welding of foil, laser cutting of foil, and laser polishing processes. The fabricated free-form parts were demonstrated and own better mechanical properties (micro hardness and tensile strength) than the raw material, because of the rapid-cooling process of laser welding. The full and strong bond between layers was formed by the laser welding process, with no micro-cracks or pores observed ...


Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li Jan 2018

Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li

Doctoral Dissertations

"The applications of Li-ion batteries require higher energy and power densities, improved safety, and sophisticated battery management systems. To satisfy these demands, as battery performances depend on the network of constituent materials, it is necessary to optimize the electrode structure. Simultaneously, the states of the battery have to be accurately estimated and controlled to maintain a durable condition of the battery system. For those purposes, this research focused on the innovation of 3D electrode via additive manufacturing, and the development of fast and accurate physical based models to predict the battery status for control purposes. Paper I proposed a novel ...


Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai Jan 2018

Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai

Masters Theses

"Quality and efficiency are pivotal indicators of a manufacturing company. Many companies are suffering from shortage of experienced workers across the production line to perform complex assembly tasks such as assembly of an aircraft engine. This could lead to a significant financial loss. In order to further reduce time and error in an assembly, a smart system consisting of multi-modal Augmented Reality (AR) instructions with the support of a deep learning network for tool detection is introduced. The multi-modal smart AR is designed to provide on-site information including various visual renderings with a fine-tuned Region-based Convolutional Neural Network, which is ...


Modeling And Experimental Investigations On Particle Dynamic Behaviors In Laser 3d Printing With Blown Powder, Wei Li Jan 2018

Modeling And Experimental Investigations On Particle Dynamic Behaviors In Laser 3d Printing With Blown Powder, Wei Li

Doctoral Dissertations

"Pre-mixed powder is frequently-used powder supply to fabricate Functional Gradient Material (FGM) by Laser 3D printing, which is also called Laser Metal Deposition (LMD). The deposited FGM composition is expected to be similar or same as supplied powder mixture. However, because pre-mixed powder has different particle densities and particle sizes, the caused particle acceleration differences can result in the separation in powder mixture. Up to now, there was no study focused on pre-mixed powders' flow behavior in LMD. The current research aims to investigate the flow behaviors of pre-mixed powder supplied for LMD through both experimental and modeling approaches. In ...


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured ...


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative ...


Modeling And Simulation Of Viscoplasticity, Recrystallization, And Softening Of Alloyed Steel During Hot Rolling Process, Xin Wang Jan 2018

Modeling And Simulation Of Viscoplasticity, Recrystallization, And Softening Of Alloyed Steel During Hot Rolling Process, Xin Wang

Doctoral Dissertations

"Hot rolling is one of the most important and complex deformation processes in steel manufacturing and is essential to final product quality. The objective of this study is to investigate viscoplasticity, dynamic recrystallization, and static softening of alloyed metal during hot rolling process. Gleeble hot compression tests were performed to provide experimental stress-strain curves at different temperatures and strain rates. An inverse finite element analysis was performed to calibrate the experimental curves. Viscoplastic models including a Johnson-Cook (JC) model, a Zerilli-Armstrong (ZA) model, and a combined JC and ZA model were developed. Dynamic recrystallization behavior was investigated and modeled based ...


Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen Jan 2018

Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen

Doctoral Dissertations

"The required rapid cooling has limited the dimension of the Bulk Metallic glasses (BMGs) produced by traditional method, and hence has seriously limited their applications, despite their remarkable mechanical properties. In this present project, a detailed study is conducted on the methodology and understanding of manufacturing large Zr- based metallic glass part by laser based additive manufacturing technology, which breaks the size limitation. The first research issue proposes and develops a new additive manufacturing technology, named Laser-Foil-Printing (LFP). Sheet foils of LM105 (Zr52.5Ti5Al10Ni14.6Cu17.9 (at. %)) metallic glass are used ...


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element ...


Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja Jan 2018

Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja

Doctoral Dissertations

"The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the ...


Characterization And Numerical Simulation Of The Microstructural And Micromechanical Viscoelastic Behavior Of Oil Sands Using The Discrete Element Method, Eric Kofi Gbadam Jan 2017

Characterization And Numerical Simulation Of The Microstructural And Micromechanical Viscoelastic Behavior Of Oil Sands Using The Discrete Element Method, Eric Kofi Gbadam

Doctoral Dissertations

"Oil sands are naturally geologic formations of predominantly quartz sand grains whose void spaces are filled with bitumen, water, and dissolved gases. The electric rope shovel is the primary equipment used for excavating the Athabasca oil sand formations. The equipment's static and dynamic loads are transferred to the formation during excavation and propel. These loads cause ground instability leading to sinkage or rutting, crawler wear, and fracture failures. These problems result in unplanned downtimes, production losses, and high maintenance costs. In order to address these problems, there is a need to develop valid models that capture the behavior and ...


Thermomechanical Fatigue Life Investigation Of An Ultra-Large Mining Dump Truck Tire, Wedam Nyaaba Jan 2017

Thermomechanical Fatigue Life Investigation Of An Ultra-Large Mining Dump Truck Tire, Wedam Nyaaba

Doctoral Dissertations

The cost benefits associated with the use of heavy mining machinery in the surface mining industry has led to a surge in the production of ultra-large radial tires with rim diameters in excess of 35 in. These tires experience fatigue failures in operation. The use of reinforcing fillers and processing aids in tire compounds results in the formation of microstructural inhomogeneity in the compounds and may serve as sources of crack initiation in the tire. Abrasive material cutting is another source of cracks in tires used in mining applications. It suffices, then, to assume that every material plane in the ...


Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari Jan 2017

Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari

Doctoral Dissertations

"An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (<1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young's modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods"--Abstract, page iv.


Bio-Inspired Flow Fields For Pem Fuel Cells- Decoupling Pressure And Distribution Effects On Performance And Identifying Design Opportunities, Joshua David Heck Jan 2017

Bio-Inspired Flow Fields For Pem Fuel Cells- Decoupling Pressure And Distribution Effects On Performance And Identifying Design Opportunities, Joshua David Heck

Masters Theses

"The performance of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) is significantly impacted by flow distributor geometry. The effects of flow distributor geometry on PEMFCs was explored in two ways in this study. Firstly, the relative effects of pressure and distribution characteristics of different flow fields on fuel cell unit and system level performance were considered. A method of decoupling these effects was proposed and demonstrated by application to the traditional serpentine and parallel flow field designs.The performance of these two designs were modeled computationally and it was shown that, of the 17% better performance of the serpentine design, 12 ...


Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa Jan 2017

Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa

Masters Theses

"Benefits of a functionally graded core increasing wrinkling stability of sandwich panels have been demonstrated in a recent paper [1] where a several-fold increase in the wrinkling stress was observed, without a significant weight penalty, using a stiffer core adjacent to the facings. In the present paper wrinkling is analyzed in case where the facings are subject to biaxial compression and/or in-plane shear loading and the core is arbitrary graded through-the-thickness. Two issues addressed are the effect of biaxial or in-plane shear loads on wrinkling stability of panels with both graded and ungraded core and the verification that functional ...


Dynamic Electromechanical Characterization Of Ferroelectrics At Cryogenic Temperatures, William Kent Hays Jan 2017

Dynamic Electromechanical Characterization Of Ferroelectrics At Cryogenic Temperatures, William Kent Hays

Masters Theses

"Electromechanical coupling in ferroelectric materials has given rise to a myriad of technological applications. Through the complex domain structure of ferroelectrics materials, which are typically stiff and have low damping, can exhibit significant structural damping. The applications for a material with a relatively large Young’s modulus and the ability to damp out vibrations would be useful for structures, more specifically, aerospace structures. The dynamic mechanical properties of ferroelectrics, particularly mechanical properties while an electric field is applied, are not well understood. This is due in part to the lack of experimental methods to measure such properties. Even with recent ...


Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li Jan 2017

Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li

Masters Theses

"Direct fusion joining titanium alloy and stainless steel can cause brittle Ti-Fe intermetallics which compromise the mechanical properties of diffusion bonds between titanium alloys and stainless steel. Therefore, filler metals are required as transition layers. In this research, stainless steel metallic powder was directly deposited on the titanium alloy substrate by laser beam, the Ti-Fe intermetallic phases formed in this process were investigated through analyzing fracture morphology, phase identification, and Vickers Hardness Number (VHN). After that, Laser Metal Deposition (LMD) was applied to explore a new fabricating process to join Ti6Al4V and SS316. A transition composition route was introducedTi6Al4V → V ...