Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Approximate Dynamic Programming Based Solutions For Fixed-Final-Time Optimal Control And Optimal Switching, Ali Heydari Jan 2013

Approximate Dynamic Programming Based Solutions For Fixed-Final-Time Optimal Control And Optimal Switching, Ali Heydari

Doctoral Dissertations

"Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of ...


Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan Jan 2006

Nonlinear Control Concepts For A Ua, Vijayakumar Janardhan, Derek Schmitz, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A reconfigurable flight control method is developed to be implemented on an Unmanned Aircraft (UA), a thirty percent scale model of the Cessna 150. This paper presents the details of the UA platform, system identification, reconfigurable controller design, development, and implementation on the UA to analyze the performance metrics. A Crossbow Inertial Measurement Unit provides the roll, pitch, and yaw accelerations and rates along with the roll and pitch. The 100-400 mini-air data boom from SpaceAge Control provides the airspeed, altitude, angle of attack, and the side slip angles. System identification is accomplished by commanding preprogrammed inputs to the control ...


Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look Jan 2005

Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look

Engineering Management and Systems Engineering Faculty Research & Creative Works

A nonlinear optimal re-entry temperature control problem is solved using single network adaptive critic (SNAC) technique. The nonlinear model developed and used accounts for conduction, convection and radiation at high temperature, represents the dynamics of heat transfer in a cooling fin for an object re-entering the earth's atmosphere. Simulation results demonstrate that the control synthesis technique presented is very effective in obtaining a desired temperature profile over a wide envelope of initial temperature distribution.


Proper Orthogonal Decomposition Based Feedback Optimal Control Synthesis Of Distributed Parameter Systems Using Neural Networks, Radhakant Padhi, S. N. Balakrishnan Jan 2002

Proper Orthogonal Decomposition Based Feedback Optimal Control Synthesis Of Distributed Parameter Systems Using Neural Networks, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A new method for optimal control design of distributed parameter systems is presented in this paper. The concept of proper orthogonal decomposition is used for the model reduction of distributed parameter systems to form a reduced order lumped parameter problem. The optimal control problem is then solved in the time domain, in a state feedback sense, following the philosophy of ''adaptive critic'' neural networks. The control solution is then mapped back to the spatial domain using the same basis functions. Numerical simulation results are presented for a linear and nonlinear one-dimensional heat equation problem in an infinite time regulator framework.


An Optimal Control Based Treatment Strategy For Parturient Paresis Using Neural Networks, Radhakant Padhi, S. N. Balakrishnan Jan 2001

An Optimal Control Based Treatment Strategy For Parturient Paresis Using Neural Networks, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An optimal online feedback treatment strategy is developed for the parturient paresis of cows, based on nonlinear optimal control theory. A limitation in the development of an existing mathematical model for calcium homeostasis is addressed and the model is extended to incorporate control inputs. An optimal feedback controller is synthesized for the nonlinear system using neural networks. Though the main aim of this paper is to solve the biomedical control problem, the methodology presented in this paper is a general computational tool, which can be applied to solve a fairly general class nonlinear optimal control problems.


Convergence Analysis Of Adaptive Critic Based Optimal Control, S. N. Balakrishnan, Xin Liu Jan 2000

Convergence Analysis Of Adaptive Critic Based Optimal Control, S. N. Balakrishnan, Xin Liu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Adaptive critic based neural networks have been found to be powerful tools in solving various optimal control problems. The adaptive critic approach consists of two neural networks which output the control values and the Lagrangian multipliers associated with optimal control. These networks are trained successively and when the outputs of the two networks are mutually consistent and satisfy the differential constraints, the controller network output produces optimal control. In this paper, we analyze the mechanics of convergence of the network solutions. We establish the necessary conditions for the network solutions to converge and show that the converged solution is optimal.


Online Identification And Control Of Aerospace Vehicles Using Recurrent Networks, Zhenning Hu, S. N. Balakrishnan Jan 1999

Online Identification And Control Of Aerospace Vehicles Using Recurrent Networks, Zhenning Hu, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Methods for estimating the aerospace system parameters and controlling them through two neural networks are presented in this study. We equate the energy function of Hopfield neural network to integral square of errors in the system dynamics and extract the parameters of a system. Parameter convergence is proved. For control, we equate the equilibrium status of a "modified" Hopfield neural network to the steady state Riccati solution with the system parameters as inputs. Through these two networks, we present the online identification and control of an aircraft using its nonlinear dynamics.


Adaptive Critic Based Neurocontroller For Autolanding Of Aircraft With Varying Glideslopes, Gaurav Saini, S. N. Balakrishnan Jan 1997

Adaptive Critic Based Neurocontroller For Autolanding Of Aircraft With Varying Glideslopes, Gaurav Saini, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, adaptive critic based neural networks have been used to design a controller for a benchmark problem in aircraft autolanding. The adaptive critic control methodology comprises successive adaptations of two neural networks, namely `action' and `critic' networks until closed loop optimal control is achieved. The autolanding problem deals with longitudinal dynamics of an aircraft which is to be landed in a specified touchdown region in the presence of wind disturbances and gusts using elevator deflection as the control for glideslope and flare modes. The performance of the neurocontroller is compared to that of a conventional PID controller. Neurocontroller ...


A New Neural Architecture For Homing Missile Guidance, S. N. Balakrishnan, Victor Biega Jan 1995

A New Neural Architecture For Homing Missile Guidance, S. N. Balakrishnan, Victor Biega

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We present a new neural architecture which imbeds dynamic programming solutions to solve optimal target-intercept problems. They provide feedback guidance solutions, which are optimal with any initial conditions and time-to-go, for a 2D scenario. The method discussed in this study determines an optimal control law for a system by successively adapting two networks - an action and a critic network. This method determines the control law for an entire range of initial conditions; it simultaneously determines and adapts the neural networks to the optimal control policy for both linear and nonlinear systems. In addition, it is important to know that the ...


Planning And Control Of A Robotic Manipulator Using Neural Networks, Xavier J. R. Avula, Heng Ma, Anil Malkani, Jay-Shinn Tsai, Luis C. Rabelo Jan 1992

Planning And Control Of A Robotic Manipulator Using Neural Networks, Xavier J. R. Avula, Heng Ma, Anil Malkani, Jay-Shinn Tsai, Luis C. Rabelo

Chemical and Biochemical Engineering Faculty Research & Creative Works

An architecture which utilizes two artificial neural systems for planning and control of a robotic arm is presented. The first neural network system participates in the trajectory planning and the motion decision-making process. The second neural network system provides the correct sequence of control actions with a high accuracy due to the utilization of an unsupervised/supervised neural network scheme. The utilization of a hybrid hierarchical/distributed organization, supervised/unsupervised learning models, and forward modeling yielded an architecture with capabilities of high level functionality.


Hierarchical Neurocontroller Architecture For Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo Jan 1992

Hierarchical Neurocontroller Architecture For Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo

Chemical and Biochemical Engineering Faculty Research & Creative Works

A hierarchical neurocontroller architecture consisting of two artificial neural network systems for the manipulation of a robotic arm is presented. The higher-level network system participates in the delineation of the robot arm workspace and coordinates transformation and the motion decision-making process. The lower-level network provides the correct sequence of control actions. A straightforward example illustrates the architecture''s capabilities, including speed, adaptability, and computational efficiency


Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli Jan 1992

Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The design of a robust guidance system for a robot is discussed. The two major tasks for this guidance system are the online recognition of a moving object invariant to rotation and translation, and tracking the moving object using a neural-network-driven vision system. This system included computer software ported to the IBM PC and interfaced with an IBM 7535 robot. The operation of this guidance system involved recognition of a moving object and the ability to track it till the robot and effector was in close proximity of the object. It was found that the robot was able to track ...