Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Manufacturing

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 54

Full-Text Articles in Mechanical Engineering

Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun Jun 2019

Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spattering has been a problem in metal processing involving high-power lasers, like laser welding, machining, and recently, additive manufacturing. Limited by the capabilities of in situ diagnostic techniques, typically imaging with visible light or laboratory x-ray sources, a comprehensive understanding of the laser-spattering phenomenon, particularly the extremely fast spatters, has not been achieved yet. Here, using MHz single-pulse synchrotron-x-ray imaging, we probe the spattering behavior of Ti-6Al-4V with micrometer spatial resolution and subnanosecond temporal resolution. Combining direct experimental observations, quantitative image analysis, as well as numerical simulations, our study unravels a novel mechanism of laser spattering: The bulk explosion of ...


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding the ...


Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri Jan 2019

Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri

Masters Theses

"Can additional information about one's body kinematics provided through hands improve human balance? Light-Touch (LT) through hands helps improve balance in a wide range of populations, both healthy and impaired. The force is too small to provide any meaningful mechanical assistance -- rather, it is suggested that the additional sensory information through hands helps the body improve balance.

To investigate the potential for improving human balance through biofeedback through hands, we developed a Virtual Cane (VC) for balance assistance during standing. The VC mimics the physical cane's function of providing information about one's body in space. Balance experiments ...


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Aug 2018

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy ...


Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown Aug 2018

Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a powder-bed fusion (PBF) process that bonds successive layers of powder with a laser to create components directly from computer-aided design (CAD) files. The additive nature of the SLM process in addition to the use of fine powders facilitates the construction of complex geometries, which has captured the attention of those involved in the design of bandpass filters for radar applications. However, a significant drawback of SLM is its difficulty in fabricating parts with overhangs necessitating the use of support structures, which, if not removed, can greatly impact the performance of bandpass filters. Therefore, in ...


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2018

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray ...


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties ...


Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny Jun 2018

Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The common modeling of digital twins uses an information model to describe the physical machines. The integration of digital twins into productive cyber-physical cloud manufacturing (CPCM) systems imposes strong demands such as reducing overhead and saving resources. In this paper, we develop and investigate a new method for building cloud-based digital twins (CBDT), which can be adapted to the CPCM platform. Our method helps reduce computing resources in the information processing center for efficient interactions between human users and physical machines. We introduce a knowledge resource center (KRC) built on a cloud server for information intensive applications. An information model ...


Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini Jan 2018

Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini

Masters Theses

"This study investigates the information provided by Light Touch (LT) in improving human postural stability without mechanical assistance. Light Touch, an interaction force with a magnitude about 1 N, is known to improve postural stability in humans during quiet standing. However, the nature of the information from LT that helped improve balance is yet unknown. In this work, we hypothesized that LT provides information about one's body kinematics. We used a haptic robot to provide modulated, measurable light interaction force on the high back haptic location of humans to provide body kinematics-dependent information through LT. Standing balance experiments were ...


Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka Jan 2018

Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka

Masters Theses

"Optical fiber sensors embedded in metals with distributed sensing can sense temperature at multiple points with single fiber. This is useful for smart manufacturing like structural health monitoring in aerospace industry and smart molds in manufacturing plants. There is a huge difference in thermal coefficient of expansion for fiber and metal. This is the reason for the increase in sensitivity for embedded fiber sensors. However, at high temperatures, the stress on the fiber increases, eventually damaging the sensor. The fiber-metal interface determines the sensor performance. A tight interface results in high sensitivity and a gap in the interface enhances sensing ...


Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode Aug 2017

Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode

Mechanical and Aerospace Engineering Faculty Research & Creative Works

While cast iron is widely used in industry, a major limitation is the weldability of a dissimilar material onto cast iron due to hot cracking as a result of lack of ductility from graphite flakes. Consequently, a significant amount of preheat is often employed to reduce the cooling rate in the fusion zone, which, however, may lead to distortion of the welded parts. A potential remedy could be the Selective Laser Melting (SLM) process, where only small melt pools are created and thus the overall energy input is reduced. The present paper describes an investigation of the SLM process to ...


Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser-Foil-Printing (LFP) is a novel laminated object manufacturing process for metal additive manufacturing. It fabricates three-dimensional metal parts by using a dual-laser system to weld and cut metal foils layer by layer. A main advantage of LFP is the higher cooling rate compared to powder-based laser additive manufacturing processes due to the thermal conductivity difference between foil and powder. This study focuses on the mechanical properties of 304L stainless steel parts built by the LFP process. The experimental results indicate that the yield strength and ultimate tensile strength of LFP fabricated 304L SS parts are higher by 9% and 8 ...


Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70°C to melt the PCL. The part is then ...


Building Zr-Based Metallic Glass Part On Ti Alloy By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Building Zr-Based Metallic Glass Part On Ti Alloy By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through using Zr intermediate layers, Zr65.7Ti3.3Al3.7Ni11.7Cu15.6 metallic glass (MG) parts are successfully built on Ti-6Al-4V substrates by laser-foil-printing (LFP) additive manufacturing technology in which MG foils are laser welded layer-by-layer onto the substrate. The printed MG part is free of porosity, cracking and crystallization; additionally, its glass transition temperature, crystallization temperature, micro-hardness, and tensile strength are very similar to the original MG material. The Zr intermediate layers are aimed at preventing direct interaction between the first layer of MG foil and the Ti substrate; otherwise, the welded MG foils would peel off from the substrate ...


Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li Jan 2017

Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li

Masters Theses

"Direct fusion joining titanium alloy and stainless steel can cause brittle Ti-Fe intermetallics which compromise the mechanical properties of diffusion bonds between titanium alloys and stainless steel. Therefore, filler metals are required as transition layers. In this research, stainless steel metallic powder was directly deposited on the titanium alloy substrate by laser beam, the Ti-Fe intermetallic phases formed in this process were investigated through analyzing fracture morphology, phase identification, and Vickers Hardness Number (VHN). After that, Laser Metal Deposition (LMD) was applied to explore a new fabricating process to join Ti6Al4V and SS316. A transition composition route was introducedTi6Al4V → V ...


Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing process for fabricating dense ceramic components from aqueous pastes of high solids loading. In this study, 3 mol% Y2O3 stabilized tetragonal zirconia polycrystal (3Y-TZP) parts were fabricated using the CODE process. The parts were then dried in a humidity controlled environmental chamber and sintered under atmospheric pressure. Mechanical properties of the sintered parts were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness and Vickers hardness. The microstructure was analyzed, and grain size was measured using scanning electron ...


Effects Of Build Parameters On Compression Properties For Ultem 9085 Parts By Fused Deposition Modeling, Krishna P. Motaparti, Gregory Taylor, Ming-Chuan Leu, K. Chandrashekhara, James Castle, Mike Matlack Aug 2016

Effects Of Build Parameters On Compression Properties For Ultem 9085 Parts By Fused Deposition Modeling, Krishna P. Motaparti, Gregory Taylor, Ming-Chuan Leu, K. Chandrashekhara, James Castle, Mike Matlack

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It has been observed by various researchers that parts fabricated by the Fused Deposition Modeling (FDM) process have anisotropic properties. The research presented in the present paper was aimed to study the compression properties of FDM parts and to comprehend their dependence on build parameters. In this study Ultem 9085 was used as the material to fabricate both solid and sparse-build coupons with variations in build direction, raster angle and air gap. A full factorial experimental design was used to study the individual and combined effects of these build parameters on the mechanical properties of the coupons. The mechanical properties ...


Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content (< 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under ...


3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day Aug 2016

3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A major limitation of synthetic bone repair is insufficient vascularization of the interior region of the scaffold. In this study, we investigated the 3D printing of adipose derived mesenchymal stem cells (AD-MSCs) with polycaprolactone (PCL)/bioactive glass composite in a single process. This offered a three-dimensional environment for complex and dynamic interactions that govern the cell’s behavior in vivo3 in overall dimensions with a filament width of ~500 μm and pore sizes ranging from 100 to 200 μm were fabricated. Strut formability dependence on paste viscosity, scaffold integrity, and printing parameters for droplets of ADMSCs suspended in Matrigel were ...


Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang Jan 2016

Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang

Masters Theses

"Functionally Gradient Materials (FGMs) feature smooth transition from one material to another within a single object. FGMs modeling is considered to be one of the new challenges in Computer Aided Design (CAD) area. To overcome this challenge, this thesis presents a composite approach to model FGMs. The input in STL format can be meshed and voxelized in FGMs modeling system. The material composition in each voxel can be generated from multiple different types of control features. And LTI filters including Gaussian Filter and Average Filter are applied to blur default material features in order to generate FGMs inside models. The ...


Design Of An Adaptive Force And Stiffness Controlled Compliant Device For Robotic Polishing, Mohammad Masud Parvez Jan 2016

Design Of An Adaptive Force And Stiffness Controlled Compliant Device For Robotic Polishing, Mohammad Masud Parvez

Masters Theses

"Polishing is a repetitive task done in an unhealthy environment. Often more than half of the manufacturing time is required to polish a die. The manual polishing process is a tedious work actively rely on a skilled human worker. Industrial Robot has replaced the human in performing these tasks. For robotic polishing to control the polishing force, an active compliant device is used. Due to the compressibility of air, a pneumatic system is preferred as the actuator of the device. The force of the actuator is controlled by regulating air pressure in both chambers of the cylinder. However, to improve ...


Prediction Of Surface Roughness In Abrasive Waterjet Cutting Of Graphite Composite Using Response Surface Methodology, Prabhakar Bala Jan 2016

Prediction Of Surface Roughness In Abrasive Waterjet Cutting Of Graphite Composite Using Response Surface Methodology, Prabhakar Bala

Masters Theses

"In the present work, surface roughness after machining of composite material was the main focus of study. Response surface methodology with Box- Behnken experimental design was applied in predicting the surface roughness (Ra) of abrasive waterjet cut 1-inch-thick graphite/epoxy composite. Second order response equations for Ra were generated with minitab, a statistical software as a function of pressure, traverse speed and isolated abrasive mesh size. Influence of each of these factors on the response were analyzed with 3D response surface plots. Abrasive mesh size was also found be a factor influencing Ra along with traverse speed and ...


Laser Surface And Sub-Surface Repair During Metal Additive Manufacturing, Prudvi Teja Ravi Jan 2015

Laser Surface And Sub-Surface Repair During Metal Additive Manufacturing, Prudvi Teja Ravi

Masters Theses

"This study examines the use of laser surface treatment to repair surface and subsurface defects. Numerical analysis was performed on laser surface melting using Gaussian heat distribution equations to analyze the depth of the melt pool created by the phenomena. Concurrently, a process map was developed with a planned set of experiments by varying the ranges of laser power and travel speed to determine the dimensions of the melt pool across the gamut. The data generated from both the process studies and the numerical analysis was then used to determine the ideal operating ranges of the process parameters to repair ...


Thermographic Investigation Of Laser Metal Deposition, Sreekar Karnati Jan 2015

Thermographic Investigation Of Laser Metal Deposition, Sreekar Karnati

Masters Theses

"Laser metal deposition as an additive manufacturing technique has been proven to possess the capability for fabricating complex, intricate geometries and excellent material properties through material deposition. Accurate manufacture of such geometric features would require precise control over the material deposition process. The need of the hour are process monitoring and analyses mechanisms that are crucial in ascertaining the occurrence of the intended actions during deposition while also serving as effective learning tools. The current work involved developing and incorporating an Infra-Red (IR) camera as a process monitoring tool for laser metal deposition. Using the IR camera the thermal dynamics ...


Performance Metrics For Powder Feeder Systems In Additive Manufacturing, Venkata Sivaram Bitragunta Jan 2015

Performance Metrics For Powder Feeder Systems In Additive Manufacturing, Venkata Sivaram Bitragunta

Masters Theses

"In blown powder Direct Metal Deposition (DMD) process, parts are built by adding metal powder on the melt pool created by the laser system. At low feed rates powder feeder systems have perturbations. The study focused on relationship between the perturbation frequencies by inherent powder feeder designs and its impact on deposition quality. Performance metric determine the relation between perturbations in the powder flow and quality of the deposit. To determine performance metric, various powder feeder designs were analyzed. Perturbation frequencies were introduced to the disk feeder design. The quality of the deposit was determined by the surface roughness of ...


Performance Analysis Of Cutting Graphite-Epoxy Composite Using A 90,000 Psi Abrasive Waterjet, Aiswarya Choppali Jan 2014

Performance Analysis Of Cutting Graphite-Epoxy Composite Using A 90,000 Psi Abrasive Waterjet, Aiswarya Choppali

Masters Theses

"Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the ...


Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu Jan 2014

Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu

Masters Theses

"Direct metal deposition (DMD) has gained increasing attention in the area of rapid manufacturing and repair. It has demonstrated the ability to produce fully dense metal parts with complex internal structures that could not be achieved by traditional manufacturing methods. However, this process involves extremely high thermal gradients and heating and cooling rates, resulting in residual stresses and distortion, which may greatly affect the product integrity. The purpose of this thesis is to study the features of thermal stress and deformation involved in the DMD process. Utilizing commercial finite element analysis (FEA) software ABAQUS, a 3-D, sequentially coupled, thermo-mechanical model ...


Modelling Of Directed Energy Deposition Processes, Xueyang Chen Jan 2014

Modelling Of Directed Energy Deposition Processes, Xueyang Chen

Masters Theses

"The laser additive manufacturing technique of laser deposition allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. The applications of laser deposition include rapid prototyping, rapid tooling and part refurbishment. The development of an accurate predictive model for laser deposition is extremely complicated due to the multitude of process parameters and materials properties involved. In this work, a heat transfer and fluid flow model is developed.

In the heat transfer and fluid flow model, the governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model ...


Additive Manufacturing Laser Deposition Of Ti-6al-4v For Aerospace Repair Application, Nanda Kumar Dey Jan 2014

Additive Manufacturing Laser Deposition Of Ti-6al-4v For Aerospace Repair Application, Nanda Kumar Dey

Masters Theses

"Parts or products machined from high performance metals are very expensive, partly due to the processing complexities during manufacturing. Therefore, many high performance metal parts users, such as the aerospace industry, mold/die casting industry, heavy machinery consumers etc., extend the service of these damaged parts by employing repair or remanufacturing technology. The research objective is to use laser deposition and machining processes to repair titanium parts.

This thesis discusses a new way of approach for developing a repair process for Ti-6Al-4V for the aerospace industry using Laser Metal Deposition (LMD). The repairs were conducted in a multi-axis hybrid manufacturing ...