Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Series

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 343

Full-Text Articles in Mechanical Engineering

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao Dec 2019

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation ...


Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Dec 2019

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states ...


Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website. Dec 2019

Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website.

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the ...


Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang Dec 2019

Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2 monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2 monolayer precisely determines the output circular ...


Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang Dec 2019

Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the ...


Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao Dec 2019

Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of ...


Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun Jun 2019

Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spattering has been a problem in metal processing involving high-power lasers, like laser welding, machining, and recently, additive manufacturing. Limited by the capabilities of in situ diagnostic techniques, typically imaging with visible light or laboratory x-ray sources, a comprehensive understanding of the laser-spattering phenomenon, particularly the extremely fast spatters, has not been achieved yet. Here, using MHz single-pulse synchrotron-x-ray imaging, we probe the spattering behavior of Ti-6Al-4V with micrometer spatial resolution and subnanosecond temporal resolution. Combining direct experimental observations, quantitative image analysis, as well as numerical simulations, our study unravels a novel mechanism of laser spattering: The bulk explosion of ...


A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou Jun 2019

A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metallic components can gain defects such as dents, cracks, wear, heat checks, deformation, etc., that need to be repaired before reinserting into service for extending the lifespan of these parts. In this study, a hybrid process was developed to integrate reverse engineering, pre-repair processing, additive manufacturing, and material testing for the purpose of part remanufacturing. Worn components with varied defects were scanned using a 3D scanner to recreate the three-dimensional models. Pre-repair processing methods which include pre-repair machining and heat-treatment were introduced. Strategies for pre-repair machining of defects including surface impact damage, surface superficial damage and cracking were presented. Pre-repair ...


Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Jun 2019

Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nondiffracting Bessel, Mathieu, and Weber vector beams are generated by using ring-shaped plasmonic geometric metasurfaces. The nondiffracting vector beam is produced by the superposition of two off-axis right-handed and left-handed circularly polarized nondiffracting scalar beams described by the Whittaker integral, which are simultaneously generated by a single metasurface with the ring-shaped phase profile. The polarization states of the generated nondiffracting vector beams are analyzed by the Stokes parameters and the orbital angular momentum states are measured by the beam interference. In addition, the selfhealing properties of nondiffracting vector beams are further demonstrated, showing that not only the beam profiles but ...


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding the ...


Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang Apr 2019

Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The transverse photo-induced voltages generated by the photon drag effect under normally and obliquely incident circularly polarized light across the plasmonic symmetry-breaking isosceles-triangle holes and right-triangle holes have been characterized. It is observed that the sign of transverse photovoltage flips when the incident circular polarization is switched for both types of plasmonic triangle holes. However, the unbalanced photovoltage between two circular polarizations is achieved across the plasmonic right-triangle holes, compared to the balanced photovoltage in the plasmonic isosceles-triangle holes. Such manipulation of the sign and the amplitude of transverse photovoltage is enabled by the broken symmetries of the electric and ...


Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao Apr 2019

Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Most of the self-accelerating beams have monotonous single-channel bending structures, which greatly limit their applications in many fields such as microscopic imaging and particle manipulation. In this paper, the self-accelerating cusp beams with variable numbers of multichannel bending structures are generated to demonstrate the optical transportation and accumulation of micrometer polystyrene particles. The transportation velocity and optical force profiles of the microparticles moving along the bending channels of cusp beams are analyzed. Parallel particle transportation and particle accumulation manipulation from all the bending channels are further demonstrated. These results will inspire a lot of promising applications for self-accelerating beams especially ...


A Comparison Of Static And Dynamic Functional Connectivities For Identifying Subjects And Biological Sex Using Intrinsic Individual Brain Connectivity, Sreevalsan S. Menon, K. Krishnamurthy Apr 2019

A Comparison Of Static And Dynamic Functional Connectivities For Identifying Subjects And Biological Sex Using Intrinsic Individual Brain Connectivity, Sreevalsan S. Menon, K. Krishnamurthy

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functional magnetic resonance imaging has revealed correlated activities in brain regions even in the absence of a task. Initial studies assumed this resting-state functional connectivity (FC) to be stationary in nature, but recent studies have modeled these activities as a dynamic network. Dynamic spatiotemporal models better model the brain activities, but are computationally more involved. A comparison of static and dynamic FCs was made to quantitatively study their efficacies in identifying intrinsic individual connectivity patterns using data from the Human Connectome project. Results show that the intrinsic individual brain connectivity pattern can be used as a ‘fingerprint’ to distinguish among ...


On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk Mar 2019

On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this study, pulse‐width modulation of laser power was identified as a feasible means for varying the chemical gradient in copper—nickel‐graded materials. Graded material deposits of 70 wt. %. copper‐30 wt. %. nickel on 100 wt. %. nickel and vice versa were deposited and characterized. The 70/30 copper—nickel weight ratio in the feedstock powder was achieved through blending elemental copper and 96 wt. %. Ni—Delero‐22 alloy. At the dissimilar material interface over the course of four layers, the duty cycle of power was ramped down from a high value to optimized deposition conditions. This change was ...


Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao Jan 2019

Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metamaterial perfect absorbers (PAs) made of a hexagonal array of holes on Ag-SiO 2 -Ag thin films have been realized and utilized to enhance the spontaneous emission rate and photoluminescence intensity of CdSe/ZnS quantum dots (QDs) spin-coated on the absorber top surface. Perfect absorption of incoming light occurs at the wavelength where the impedance is matched to that of the free space. When QDs strongly excite both the electric and magnetic resonances at this perfect absorption wavelength, a significant Purcell effect on the spontaneous emission process and enhanced radiative outcoupling of photoluminescence intensity are expected. For perfect absorbers with ...


Near-Field Electrospinning Of A Polymer/Bioactive Glass Composite To Fabricate 3d Biomimetic Structures, Krishna C. R. Kolan, Jie Li, Sonya Roberts, Julie A. Semon, Jonghyun Park, D. E. Day, Ming-Chuan Leu Jan 2019

Near-Field Electrospinning Of A Polymer/Bioactive Glass Composite To Fabricate 3d Biomimetic Structures, Krishna C. R. Kolan, Jie Li, Sonya Roberts, Julie A. Semon, Jonghyun Park, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioactive glasses include incorporation of glass particles and achieving a 3D architecture mimicking natural tissues. In this study, we investigate the fabrication of scaffolds with a polymer/bioactive glass composite using near-field electrospinning (NFES). An overall controlled 3D scaffold with pores, containing random fibers, is created and aimed to provide superior cell proliferation. Highly angiogenic borate bioactive glass (13-93B3) in 20 wt.% is added to polycaprolactone (PCL) to fabricate scaffolds using the NFES ...


Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou Jan 2019

Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through laser metal deposition, attempts were made to coat AlCoCrFeNi, a high-entropy alloy (HEA), on an AISI 304 stainless steel substrate to integrate their properties. However, the direct coating of the AlCoCrFeNi HEA on the AISI 304 substrate was found to be unviable due to cracks at the interface between these two materials. The difference in compositional change was suspected to be the source of the cracks. Therefore, a new transition route was performed by coating an intermediate layer of CoFe2Ni on the AISI 304 substrate. Investigations into the microstructure, phase composition, elemental composition and Vickers hardness were ...


Spin-Controlled Wavefront Shaping With Plasmonic Chiral Geometric Metasurfaces, Yang Chen, Xiaodong Yang, Jie Gao Dec 2018

Spin-Controlled Wavefront Shaping With Plasmonic Chiral Geometric Metasurfaces, Yang Chen, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on ...


Accelerated Freezing Due To Droplet Pinning On A Nanopillared Surface, Rachel Bohm, Mohammad Rejaul Haque, Chuang Qu, Edward C. Kinzel, Amy Rachel Betz Dec 2018

Accelerated Freezing Due To Droplet Pinning On A Nanopillared Surface, Rachel Bohm, Mohammad Rejaul Haque, Chuang Qu, Edward C. Kinzel, Amy Rachel Betz

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The freezing process is significantly influenced by environmental factors and surface morphologies. At atmospheric pressure, a surface below the dew and freezing point temperature for a given relative humidity nucleates water droplets heterogeneously on the surface and then freezes. This paper examines the effect of nanostructured surfaces on the nucleation, growth, and subsequent freezing processes. Microsphere Photolithography (MPL) is used to pattern arrays of silica nanopillars. This technique uses a self-assembled lattice of microspheres to focus UV radiation to an array of photonic jets in photoresist. Silica is deposited using e-beam evaporation and lift-off. The samples were placed on a ...


Near-Infrared Chiral Plasmonic Metasurface Absorbers, Leixin Ouyang, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Jie Gao, Xiaodong Yang Nov 2018

Near-Infrared Chiral Plasmonic Metasurface Absorbers, Leixin Ouyang, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Chirality plays an essential role in the fields of biology, medicine and physics. However, natural materials exhibit very weak chiroptical response. In this paper, near-infrared chiral plasmonic metasurface absorbers are demonstrated to selectively absorb either the left-handed or right-handed circularly polarized light for achieving large circular dichroism (CD) across the wavelength range from 1.3 µm to 1.8 µm. It is shown that the maximum chiral absorption can reach to 0.87 and that the maximum CD in absorption is around 0.70. The current chiral metasurface design is able to achieve strong chiroptical response, which also leads to ...


Revealing Particle-Scale Powder Spreading Dynamics In Powder-Bed-Based Additive Manufacturing Process By High-Speed X-Ray Imaging, Luis I. Escano, Niranjan D. Parab, Lianghua Xiong, Qilin Guo, Cang Zhao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen Oct 2018

Revealing Particle-Scale Powder Spreading Dynamics In Powder-Bed-Based Additive Manufacturing Process By High-Speed X-Ray Imaging, Luis I. Escano, Niranjan D. Parab, Lianghua Xiong, Qilin Guo, Cang Zhao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder spreading is a key step in the powder-bed-based additive manufacturing process, which determines the quality of the powder bed and, consequently, affects the quality of the manufactured part. However, powder spreading behavior under additive manufacturing condition is still not clear, largely because of the lack of particle-scale experimental study. Here, we studied particle-scale powder dynamics during the powder spreading process by using in-situ high-speed high-energy x-ray imaging. Evolution of the repose angle, slope surface speed, slope surface roughness, and the dynamics of powder clusters at the powder front were revealed and quantified. Interactions of the individual metal powders, with ...


Deformation Of A Ferrofluid Droplet In Simple Shear Flows Under Uniform Magnetic Fields, Md Rifat Hassan, Jie Zhang, Cheng Wang Sep 2018

Deformation Of A Ferrofluid Droplet In Simple Shear Flows Under Uniform Magnetic Fields, Md Rifat Hassan, Jie Zhang, Cheng Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We numerically investigate the deformation and orientation of a ferrofluid droplet in a simple shear flow under a uniform magnetic field. The numerical simulation is based on the finite element method and couples the magnetic and flow fields. A level set method is used to model the dynamic motion of the droplet interface. Systematic numerical simulations are used to assess the effects of the direction and the strength of the magnetic field. Focusing on low Reynolds number flows (Re ≲ 0.02), the numerical results indicate that at a small capillary number (Ca ≈ 0.02), the magnetic field dominates over the ...


Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino Sep 2018

Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A cylindrical rolling robot is developed that generates roll torque by changing the shape of its flexible, elliptical outer surface whenever one of four elliptical axes rotates past an inclination called trigger angle. The robot is equipped with a sensing/control system by which it measures angular position and angular velocity, and computes error with respect to a desired step angular velocity profile. When shape change is triggered, the newly assumed shape of the outer surface is determined according to the computed error. A series of trial rolls is conducted using various trigger angles, and energy consumed by the actuation ...


Shape-Based Separation Of Micro-/Nanoparticles In Liquid Phases, Behrouz Behdani, Saman Monjezi, Mason J. Carey, Curtis G. Weldon, Jie Zhang, Cheng Wang, Joontaek Park Sep 2018

Shape-Based Separation Of Micro-/Nanoparticles In Liquid Phases, Behrouz Behdani, Saman Monjezi, Mason J. Carey, Curtis G. Weldon, Jie Zhang, Cheng Wang, Joontaek Park

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The production of particles with shape-specific properties is reliant upon the separation of micro-/nanoparticles of particular shapes from particle mixtures of similar volumes. However, compared to a large number of size-based particle separation methods, shape-based separation methods have not been adequately explored. We review various up-to-date approaches to shape-based separation of rigid micro-/nanoparticles in liquid phases including size exclusion chromatography, field flow fractionation, deterministic lateral displacement, inertial focusing, electrophoresis, magnetophoresis, self-assembly precipitation, and centrifugation. We discuss separation mechanisms by classifying them as either changes in surface interactions or extensions of size-based separation. The latter includes geometric restrictions and ...


Ultrafast X-Ray Imaging Of Laser-Metal Additive Manufacturing Processes, Niranjan D. Parab, Cang Zhao, Ross Cunningham, Luis I. Escano, Kamel Fezzaa, Wes Everhart, Anthony D. Rollett, Lianyi Chen, Tao Sun Sep 2018

Ultrafast X-Ray Imaging Of Laser-Metal Additive Manufacturing Processes, Niranjan D. Parab, Cang Zhao, Ross Cunningham, Luis I. Escano, Kamel Fezzaa, Wes Everhart, Anthony D. Rollett, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly helpful ...


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Aug 2018

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy ...


Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown Aug 2018

Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a powder-bed fusion (PBF) process that bonds successive layers of powder with a laser to create components directly from computer-aided design (CAD) files. The additive nature of the SLM process in addition to the use of fine powders facilitates the construction of complex geometries, which has captured the attention of those involved in the design of bandpass filters for radar applications. However, a significant drawback of SLM is its difficulty in fabricating parts with overhangs necessitating the use of support structures, which, if not removed, can greatly impact the performance of bandpass filters. Therefore, in ...


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2018

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray ...


Generation Of Transverse Photo-Induced Voltage In Plasmonic Metasurfaces Of Triangle Holes, Marjan Akbari, Jie Gao, Xiaodong Yang Aug 2018

Generation Of Transverse Photo-Induced Voltage In Plasmonic Metasurfaces Of Triangle Holes, Marjan Akbari, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We experimentally and numerically demonstrate the transverse electrical response produced by circularly-polarized light with normal incidence observed as transverse photoinduced voltage across the plasmonic metasurface made of triangle holes. The measured transverse photo-induced voltage is consistent with the calculated acting force on electrons in the metasurface by using the Maxwell's stress tensor. The polarity of voltage reverses as the incident spin (light helicity) switches from right-handed circular polarization to left-handed circular polarization. The origin of the spin-dependent voltage sign is the broken symmetries of the electric and magnetic fields in the triangle hole due to the opposite circular polarizations ...


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties ...