Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

986 Full-Text Articles 1,303 Authors 473,646 Downloads 63 Institutions

All Articles in Navigation, Guidance, Control and Dynamics

Faceted Search

986 full-text articles. Page 5 of 43.

The Bobo Project: Hexa-Eagles, Anjana Mahesh Kumar, Huna Amad, Jean Samirah Venturina, Sakthivel Mithra, Suhasini, Sumaiyathul Faaliha 2022 Embry-Riddle Aeronautical University

The Bobo Project: Hexa-Eagles, Anjana Mahesh Kumar, Huna Amad, Jean Samirah Venturina, Sakthivel Mithra, Suhasini, Sumaiyathul Faaliha

Student Works

The consumer business has undergone a substantial shift in how customers to shop since the introduction of online shopping. When the world was affected by Covid-19 in 2020, one of the most major repercussions was in the Food & Beverage (F&B) and grocery industries. As a result of the pandemic, many cities were put under lockdown, and everyone remained indoors. Consumer purchasing patterns changed dramatically, with malls closing or operating with limited access, and customers avoiding common spaces for fear of getting the virus. As the global epidemic progressed, several firms were forced to close their physical locations due to …


Attainable Moment Set And Actuation Time Of A Bio-Inspired Rotating Empennage, Christian R. Bolander, Douglas F. Hunsaker, David Myszka, James J. Joo 2022 Utah State University

Attainable Moment Set And Actuation Time Of A Bio-Inspired Rotating Empennage, Christian R. Bolander, Douglas F. Hunsaker, David Myszka, James J. Joo

Mechanical and Aerospace Engineering Faculty Publications

Future tactical aircraft will likely demonstrate improvements in efficiency, weight, and control by implementing bio-inspired control systems. This work analyzes a novel control system for a fighter aircraft inspired by the function of – and the degrees of freedom available in – a bird’s tail. The control system is introduced to an existing fighter aircraft design by removing the vertical tail and allowing the horizontal tail surfaces to rotate about the roll axis. Using a low-fidelity aerodynamic model, an analysis on the available controlling moments and actuation speeds of the baseline aircraft is compared to that of the bio-inspired rotating …


Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz 2022 University of Kentucky

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz

Theses and Dissertations--Mechanical Engineering

Advances in the miniaturization of powerful electronic components and motors, the democratization of global navigation satellite systems (GNSS), and improvements in the performance, safety, and cost in lithium batteries has led to the proliferation of small and relatively inexpensive unmanned aerial vehicles (UAVs). Many of these UAVs are of the multi-rotor design, however, fixed-wing designs are often more efficient than rotary-wing aircraft, leading to a reduction in the power required for a UAV of a given mass to stay airborne. Autonomous cooperation between multiple UAVs would enable them to complete objectives that would be difficult or impossible for a single …


Design, Development, And Testing Of Near-Optimal Satellite Attitude Control Strategies, Giovanni Lavezzi 2022 South Dakota State University

Design, Development, And Testing Of Near-Optimal Satellite Attitude Control Strategies, Giovanni Lavezzi

Electronic Theses and Dissertations

Advances in space technology and interest toward remote sensing mission have grown in the recent years, requiring the attitude control subsystems of observation satellites to increase their performances in terms of pointing accuracy and on-board implementability. Moreover, an increased interest in small satellite missions and the recent technological developments related to the CubeSats standard have drastically reduced the cost of producing and flying a satellite mission. In this context, the proposed research aims to improve the state of the art for satellite attitude control methodologies by proposing a near-optimal attitude control strategy, simulated in a high-fidelity environment. Two strategies are …


Evaluation Of Onboard Detect-And-Avoid System For Suas Bvlos Operations, Jon M. Loffi, Samuel M. Vance, Jamey Jacob, Luke Spaulding, Jared C. Dunlap 2022 Oklahoma State University - Main Campus

Evaluation Of Onboard Detect-And-Avoid System For Suas Bvlos Operations, Jon M. Loffi, Samuel M. Vance, Jamey Jacob, Luke Spaulding, Jared C. Dunlap

International Journal of Aviation, Aeronautics, and Aerospace

No abstract provided.


Precise Landing Of Vtol Uavs Using A Tether, Jeremy W. Rathjen 2022 West Virginia University

Precise Landing Of Vtol Uavs Using A Tether, Jeremy W. Rathjen

Graduate Theses, Dissertations, and Problem Reports

Unmanned Aerial Vehicles (UAVs), also known as drones, are often considered the solution to complex robotics problems. The significant freedom to explore an environment is a major reason why UAVs are a popular choice for automated solutions. UAVs, however, have a very limited flight time due to the low capacity and weight ratio of current batteries. One way to extend the vehicles' flight time is to use a tether to provide power from external batteries, generators on the ground, or another vehicle. Attaching a tether to a vehicle may constrain its navigation but it may also create some opportunities for …


Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd 2022 The University of Akron

Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd

Williams Honors College, Honors Research Projects

The design will be an autonomous payload consisting of auto deployment of a drone running an autonomous mission of mapping the terrain around a grounded rocket. The project is part of the Akronauts payload project for the 2022 Spaceport competition. It will include the development of a ground station for monitoring and controlling the drone and the transfer of live data to the station and a computer on board the rocket. The project will aim to use system engineering techniques to accomplish this in the hope of providing documentation and thus insight into the best way to develop a multi-disciplinary …


Development Of A Three Degree-Of-Freedom Control Simulation For A Group 3 Large Unmanned Aircraft System, Majka Anna Wilczynski 2021 Mississippi State University

Development Of A Three Degree-Of-Freedom Control Simulation For A Group 3 Large Unmanned Aircraft System, Majka Anna Wilczynski

Theses and Dissertations

Aircraft modeling and simulation has become increasingly important in the aviation world. Simulations allow for safer and more economical training prior to flight testing. In this project, a three degree-of-freedom control simulation coded in a MATLAB environment is used to assess and simulate the dynamic stability of group three unmanned aircraft system. By calculating, evaluating, and simulating the static and dynamic stability derivatives of the aircraft, this project will allow for the estimation of the handling qualities of an unmanned aircraft system. This can help mitigate risks that come along with altering the mass and aerodynamic properties of an aircraft, …


Optimal Sizing And Control Of Hybrid Rocket Vehicles, SRIJA RYAKAM 2021 Embry-Riddle Aeronautical University

Optimal Sizing And Control Of Hybrid Rocket Vehicles, Srija Ryakam

Doctoral Dissertations and Master's Theses

In the present work, a genetic algorithm is used to optimize a hybrid rocket engine in order to minimize the propellant required for a specific mission. In a hybrid rocket engine, the mass flow rate of the oxidizer can be throttled to enhance the performance of the rocket. First, an analysis of the internal ballistics and the ascent trajectory has been carried out for different mass flow rates of the oxidizer as a function of time, for a fixed amount of oxidizer, in order to study the effect of throttling. Two equivalent problems are considered: in the first problem the …


Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa 2021 California Polytechnic State University, San Luis Obispo

Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa

Master's Theses

A light curve is a plot of brightness versus time of an object. Light curves are dependent on orbit, attitude, surface area, size, and shape of the observed object. Using light curve data, several analysis methods have been developed to derive these parameters. These parameters can be used for tracking orbital debris, monitoring satellite health, and determining the mission of an unknown spacecraft.

This paper discusses the development, verification, and utilization of a tool that simulates light curve data. This tool models ground-based observations, space-based observations, self-shadowing geometry, tumbling debris, and controlled spacecraft. The main output from the tool is …


Trajectory Generation For A Multibody Robotic System: Modern Methods Based On Product Of Exponentials, Aryslan Malik 2021 Embry-Riddle Aeronautical University

Trajectory Generation For A Multibody Robotic System: Modern Methods Based On Product Of Exponentials, Aryslan Malik

Doctoral Dissertations and Master's Theses

This work presents several trajectory generation algorithms for multibody robotic systems based on the Product of Exponentials (PoE) formulation, also known as screw theory. A PoE formulation is first developed to model the kinematics and dynamics of a multibody robotic manipulator (Sawyer Robot) with 7 revolute joints and an end-effector.

In the first method, an Inverse Kinematics (IK) algorithm based on the Newton-Raphson iterative method is applied to generate constrained joint-space trajectories corresponding to straight-line and curvilinear motions of the end effector in Cartesian space with finite jerk. The second approach describes Constant Screw Axis (CSA) trajectories which are generated …


Issue 18: Contributors, Don Flournoy 2021 Ohio University

Issue 18: Contributors, Don Flournoy

Online Journal of Space Communication

List of Issue 18 Contributors


Sunsat Design Competition 2015-2016 First Place Winner – Team Space Transport: Power Satellites Beamed Energy Bootstrapping, Keith Henson, Anna Nesterova 2021 Ohio University

Sunsat Design Competition 2015-2016 First Place Winner – Team Space Transport: Power Satellites Beamed Energy Bootstrapping, Keith Henson, Anna Nesterova

Online Journal of Space Communication

This International SunSat Design Competition first-place winner for 2016 describes a beamed energy transport system that will operate in Space above low earth orbit (LEO) as a way to move power satellite parts into high orbits.

This design, entitled “Beamed Energy Bootstrapping,” makes use of small propulsion power satellites to provide the energy for space-based vehicles using electric arcjets. The proposal lays out a scheme to get the first propulsion power satellite in place without damage as it passes through the orbiting space junk below 2000 km.

Click here to see the video: Space Transport for Power Satellites Beamed Energy …


Sunsat Design Competition 2015-2016 Second Place Winner – Team Pathway To Power : Wireless Power Transfer, Javier Tandazo, Ethan Wong, Curtis Waggoner, John Guggenheim, Alexander Carter 2021 Ohio University

Sunsat Design Competition 2015-2016 Second Place Winner – Team Pathway To Power : Wireless Power Transfer, Javier Tandazo, Ethan Wong, Curtis Waggoner, John Guggenheim, Alexander Carter

Online Journal of Space Communication

Solar Power Satellites (SPS) using Wireless Power Transfer (WPT) to beam renewable energy to consumers on earth face three grand challenges: moving parts, heat dissipation, and radio interference. Solutions to each of these “show stoppers” are presented here. Further, a progressively more-complex pathway is described which starts where we are now and leads step-wise to implementation of large-scale Space Solar Power (SSP).

The first two grand challenges are addressed by a novel SPS design based on a thin-walled cylinder configuration of solar panels. The remaining challenge is tackled through a newly-discovered antenna configuration which allows dramatic reduction in radio/telecom interference …


Sunsat Design Competition 2014-2015 Third Place Winner – Team Martian: Space Solar Power Test Bed, Jeremy Straub, Tristan Plante, Benjamin Kading, Alex Holland, Landon Klein, Jordan Forbord 2021 Ohio University

Sunsat Design Competition 2014-2015 Third Place Winner – Team Martian: Space Solar Power Test Bed, Jeremy Straub, Tristan Plante, Benjamin Kading, Alex Holland, Landon Klein, Jordan Forbord

Online Journal of Space Communication

We propose a four-stage plan to demonstrate the effectiveness and safety of Space Solar Power (SSP) for use on Earth. Our project goal is to achieve Technology Readiness Level (TRL) by means of: 1) a test mission in low Earth orbit using a small spacecraft; 2) that will support a manned mission to Mars; 3) that includes a bent pipe experiment (power supplied from Earth, to a spacecraft and back to Earth), and 4) to complete system deployment.

The primary impediment to SSP implementation is thought to be the acceptance of the system by those on Earth who may be …


Sunsat Design Competition 2014-2015 First Place Winner – Team Cast: Multi-Rotary Joints Sps, Xinbin Hou, Meng Li, Lili Niu, Lu Zhou, Ying Chen, Zhengai Cheng, Haipeng Ji 2021 Ohio University

Sunsat Design Competition 2014-2015 First Place Winner – Team Cast: Multi-Rotary Joints Sps, Xinbin Hou, Meng Li, Lili Niu, Lu Zhou, Ying Chen, Zhengai Cheng, Haipeng Ji

Online Journal of Space Communication

Space Power Satellite (SPS) is a huge spacecraft designed to collect solar energy in space for supplying electric power to the electric grid on the ground. The SPS concept was first proposed by Dr. Peter Glaser in 1968.

Various studies on SPS in various countries have been produced over the past forty years. Today, there are multiple variations on this early concept, both in innovation and in optimization. Because of the huge size, immense mass and high power of these SPS installations, there are many technological difficulties.

Here, a new Multi-Rotary Joints SPS (MR-SPS) concept is proposed. The large solar …


Sunsat Design Competition 2014-2015 Second Place Winner – Team Sunflower: Thermal Power Satellite, Keith Henson, Steve Nixon, Kris Holland, Anna Nesterova 2021 Ohio University

Sunsat Design Competition 2014-2015 Second Place Winner – Team Sunflower: Thermal Power Satellite, Keith Henson, Steve Nixon, Kris Holland, Anna Nesterova

Online Journal of Space Communication

Space-based Solar Power has failed to be competitive on cost in spite of decades of study. A new approach appears to resolve the cost issue, undercutting coal and opening huge markets for low cost solar power from space. There are two parts to the problem. First is the cost of lifting parts to Geosynchronous Earth Orbit (GEO; second is the mass of parts that make up a power satellite.

Our team is proposing a combination that makes use of Skylon to Low Earth Orbit (LEO), and a 15,000 ton payload ground powered electric propulsion from LEO to GEO. This strategy …


Sunsat Design Competition 2013-2014 Third Place Winner – Team University Of North Dakota: Nano Ssp Satellite, Corey Bergsrud, Robert Bernaciak, Ben Kading, John McClure, Jeremy Straub, Subin Shahukhal, Karl Williams 2021 Ohio University

Sunsat Design Competition 2013-2014 Third Place Winner – Team University Of North Dakota: Nano Ssp Satellite, Corey Bergsrud, Robert Bernaciak, Ben Kading, John Mcclure, Jeremy Straub, Subin Shahukhal, Karl Williams

Online Journal of Space Communication

This work presents the conceptualization of a Space-to-Space Microwave Wireless Power Transmission (S2S-MWPT) experimental demonstration mission using small spacecraft. Literature reviews [1, 2] suggest a stepwise procedure for technology demonstrations in support of advancing space solar power satellite (SSPS) systems. These technologies should be verified first on Earth and then in-space using small satellites. This project built its S2S-MWPT demonstration concept within the University NanoSat program restrictions (dimensions of 50cm x 50cm x 60cm and mass of 50kg). The idea is to use these upper limit restrictions to develop the MWPT spacecraft (MicroSat). Contained inside the MicroSat …


Sunsat Design Competition 2013-2014 Second Place Winner – Team Solar Maximum Llc: Sun-Synchronous Orbits, Danny R. Jones, Anna Nesterova 2021 Ohio University

Sunsat Design Competition 2013-2014 Second Place Winner – Team Solar Maximum Llc: Sun-Synchronous Orbits, Danny R. Jones, Anna Nesterova

Online Journal of Space Communication

The orbital location of PowerSats plays a critical role in determining the mass of the solar power satellite (PowerSat) transmitter and the size of the rectenna on the Earth’s surface. These in turn play an important role in the cost of deploying the PowerSat, especially the cost of launching the PowerSat into orbit as the transmitter makes up a large part of the PowerSats mass. We will consider a new approach to PowerSat orbital positioning by considering a circular sun-synchronous orbit at 5,185.3 kilometers with an inclination of 142.1 degrees. Locating the PowerSat at this location offers several benefits and …


Sunsat Design Competition 2013-2014 First Place Winner – Team Rajiv Gandhi University: Helioastra, Akhil Raj Kumar Kalapala, Krishna Bhavana Sivaraju 2021 Ohio University

Sunsat Design Competition 2013-2014 First Place Winner – Team Rajiv Gandhi University: Helioastra, Akhil Raj Kumar Kalapala, Krishna Bhavana Sivaraju

Online Journal of Space Communication

HelioAstra is a creative design and visualization of an advanced Space Solar Power system. Its concept is validated by a credible science and engineering approach and an innovative business plan.

The space and ground receiving segments are made up of high efficiency Fresnel lens concentrator quantum dot solar cells. The solar array in space is sized at 933 m2. It delivers 1 MW (1000 kW) of perennial, clean and eco-friendly solar electric power at the bus-bars on the ground.

A solid state laser system containing Neodymium doped Yttrium Aluminium garnet (Nd: Y3Al5O12) will accurately and efficiently transmit power. A ground …


Digital Commons powered by bepress