Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

988 Full-Text Articles 1,305 Authors 473,646 Downloads 63 Institutions

All Articles in Navigation, Guidance, Control and Dynamics

Faceted Search

988 full-text articles. Page 2 of 43.

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua 2023 University of Florida

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Exploring Underwater Noise Issues: A Study Of Decentralized Approach, Takanori Uzumaki 2023 World Maritime University

Exploring Underwater Noise Issues: A Study Of Decentralized Approach, Takanori Uzumaki

World Maritime University Dissertations

No abstract provided.


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua 2023 University of Florida

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon 2023 California Polytechnic State University, San Luis Obispo

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. McCann 2023 Embry-Riddle Aeronautical University

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff 2023 Embry-Riddle Aeronautical University

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey 2023 Old Dominion University

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey

Mechanical & Aerospace Engineering Theses & Dissertations

Magnetic Suspension and Balance Systems (MSBS) allow for static, forced oscillation and free to oscillate dynamic stability testing in a wind tunnel without the need for a physical support. The objectives of study are to assist in the application of the free to oscillate testing method in an MSBS to determine dynamic stability characteristics for various re-entry capsule designs.

This thesis discusses the development and testing of a launching method called the grabber for use in the MSBS Subsonic Wind Tunnel at NASA Langley Research Center. Aerodynamic tests were run to support the use of this method and compare the …


Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl 2023 Air Force Institute of Technology

Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl

Faculty Publications

One of the fundamental problems of robotics and navigation is the estimation of the relative pose of an external object with respect to the observer. A common method for computing the relative pose is the iterative closest point (ICP) algorithm, where a reference point cloud of a known object is registered against a sensed point cloud to determine relative pose. To use this computed pose information in downstream processing algorithms, it is necessary to estimate the uncertainty of the ICP output, typically represented as a covariance matrix. In this paper, a novel method for estimating uncertainty from sensed data is …


Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton 2023 Eastern Washington University

Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton

2023 Symposium

Quadcopters (quad) are used widely in many industries with crucial applications such as infrastructure inspection or package delivery. The Crazyflie 2.1 quad from Bitcraze provides an excellent platform for research and development. In this project, our goal is to perform system identification on the Crazyflie to propose a complete model. A gray box method is explored, which includes leveraging the parameters that are already known, to develop a set of equations. Through theory, simulations, and measurements, a complete quadcopter model is developed.


Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein 2023 California Polytechnic State University, San Luis Obispo

Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein

Electrical Engineering

Natilus, an aerospace company that is rapid-prototyping optionally piloted aircraft (OPA) for the shipping industry, needs a system that retrieves control column position data in order to manipulate flight simulator parameters in software. At present, a universally compatible system for all aircraft does not exist. Typically, established aerospace companies will sink significant time and money into developing proprietary systems for control column data retrieval as every aircraft is unique in its layout and linkage design. However, as a startup developing their first aircraft, Natilus does not have the privilege of modifying an existing sensor system to work with their HIL …


Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon 2023 California Polytechnic State University, San Luis Obispo

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon

Master's Theses

The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga 2023 California Polytechnic State University, San Luis Obispo

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson 2023 California Polytechnic State University, San Luis Obispo

Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson

Master's Theses

Consensus strategies are examined as a possible approach to achieving attitude alignment for a large, close-proximity formation of nanosatellites in low earth orbit (LEO). An attitude-only distributed consensus approach is selected for further consideration due to its comparatively low data transmission requirements. The convergence of a connected network of satellites to the attitude agreement subspace under this control law is shown using a Lyapunov stability approach with a set of idealizing assumptions. A moderate-fidelity simulation demonstrates the performance of the control law under realistic conditions that violate those assumptions. Particular emphasis is placed on the conditions that arise from the …


An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter 2023 Embry-Riddle Aeronautical University

An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter

Doctoral Dissertations and Master's Theses

The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM).

The AISOSVM framework combines the strengths of the AIS and …


Online Estimation Of Unknown Parameters For Flexible Spacecraft, Nicolo Woodward 2023 Embry-Riddle Aeronautical University

Online Estimation Of Unknown Parameters For Flexible Spacecraft, Nicolo Woodward

Doctoral Dissertations and Master's Theses

Attitude controls methods of highly flexible spacecraft have seen increased interest over the last decades thanks to the technological development of flexible solar panels and deploy-ables, which improves the capabilities of small satellites. However, a high-fidelity model of the flexible mode dynamics is hard to obtain in on-ground testing because not all modes of frequencies can be observed, complicating the controller design. Furthermore, plastic deformations due to long periods of storage of stowed flexible components could result in exciting frequencies outside of the designed controller’s bandwidth, leading to an uncontrollable system. This thesis proposes a method to develop a high-fidelity …


Investigation Of Interplanetary Trajectories To Sedna, John W. Sarappo III, Samuel Brickley, Iliane Domenech, Lorenzo Franceschetti, James E. Lyne 2023 University of Tennessee, Knoxville

Investigation Of Interplanetary Trajectories To Sedna, John W. Sarappo Iii, Samuel Brickley, Iliane Domenech, Lorenzo Franceschetti, James E. Lyne

Chancellor’s Honors Program Projects

No abstract provided.


Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Mendoza Zambrano 2023 Embry-Riddle Aeronautical University

Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Mendoza Zambrano

Doctoral Dissertations and Master's Theses

In the interest of exploiting natural forces for propellant-less spacecraft missions, this thesis proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To …


Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis 2023 Old Dominion University

Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

This paper presents a probabilistic approach to quantifying interceptability of an interaction scenario designed to test collision avoidance of autonomous navigation algorithms. Interceptability is one of many measures to determine the complexity or difficulty of an interaction scenario. This approach uses a combined probability model of capability and intent to create a predicted position probability map for the system under test. Then, intercept-ability is quantified by determining the overlap between the system under test probability map and the intruder’s capability model. The approach is general; however, a demonstration is provided using kinematic capability models and an odometry-based intent model.


Nonlinear Dynamics Analysis And Control Of Space Vehicles With Flexible Structures, Marco Fagetti 2023 Embry-Riddle Aeronautical University

Nonlinear Dynamics Analysis And Control Of Space Vehicles With Flexible Structures, Marco Fagetti

Doctoral Dissertations and Master's Theses

Space vehicles that implement hardware such as antennas, solar panels, and other extended appendages necessary for their respective missions must consider the nonlinear rotational and vibrational dynamics of these flexible structures. Formulation and analysis of these flexible structures must account for the rigid-flexible coupling present in the system dynamics for stability analysis and control design. The system model is represented by a flexible appendage attached to a central rigid body, where the flexible appendage is modeled as a cantilevered Euler-Bernoulli beam. Discretization techniques, such as the assumed modes method and the finite element method, are used to model the coupled …


Optical Orbit Tracking And Estimation, Matthew Gillette 2023 Embry-Riddle Aeronautical University

Optical Orbit Tracking And Estimation, Matthew Gillette

Doctoral Dissertations and Master's Theses

Angles-only initial orbit determination methods are currently limited in their use as they require some prior knowledge of where the observed object will be and when it will be there. This research aims to produce a viable method to automate this process so that objects whose trajectories are not saved in a user’s catalog can be observed. A method is devised using a novel approach to satellite recognition in an image. This method is used in addition to Astrometry to determine the right ascension and declination of the object. This information is then used to either obtain the initial conditions …


Digital Commons powered by bepress