Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,566 Full-Text Articles 3,605 Authors 593,445 Downloads 122 Institutions

All Articles in Engineering Physics

Faceted Search

1,566 full-text articles. Page 55 of 68.

Multipole And Field Uniformity Tailoring Of A 750 Mhz Rf Dipole, A. Castilla, Jean R. Delayen 2014 Old Dominion University

Multipole And Field Uniformity Tailoring Of A 750 Mhz Rf Dipole, A. Castilla, Jean R. Delayen

Physics Faculty Publications

In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependency …


Development Of A Multi-Spoke Superconducting Cavity For Nuclear Physics, Light Sources, And Driven Systems Applications, Jean Delayen 2014 Old Dominion University

Development Of A Multi-Spoke Superconducting Cavity For Nuclear Physics, Light Sources, And Driven Systems Applications, Jean Delayen

Physics Faculty Publications

No abstract provided.


Multiferroic Hexagonal Ferrites (H-Rfeo3, R=Y, Dy-Lu): An Experimental Review, Xiaoshan Xu, Wenbin Wang 2014 University of Nebraska-Lincoln

Multiferroic Hexagonal Ferrites (H-Rfeo3, R=Y, Dy-Lu): An Experimental Review, Xiaoshan Xu, Wenbin Wang

Xiaoshan Xu Papers

Hexagonal ferrites (h-RFeO3, R=Y, Dy-Lu) have recently been identified as a new family of multiferroic complex oxides. The coexisting spontaneous electric and magnetic polarizations make h-RFeO3 rare-case ferroelectric ferromagnets at low temperature. Plus the room-temperature mul- tiferroicity and predicted magnetoelectric effect, h-RFeO3 are promising materials for multiferroic applications. Here we review the structural, ferroelectric, magnetic, and magnetoelectric properties of h-RFeO3. The thin film growth is also discussed because it is critical in making high quality single crystalline materials for studying intrinsic properties.


Structural And Electronic Origin Of The Magnetic Structures In Hexagonal Lufeo3, Hongwei Wang, Igor V. Solovyev, Wenbin Wang, Xiao Wang, Philip J. Ryan, David J. Keavney, Jong-Woo Kim, Thomas Z. Ward, Leyi Zhu, Jian Shen, X. M. Cheng, Lixin He, Xiaoshan Xu, Xifan Wu 2014 Temple University

Structural And Electronic Origin Of The Magnetic Structures In Hexagonal Lufeo3, Hongwei Wang, Igor V. Solovyev, Wenbin Wang, Xiao Wang, Philip J. Ryan, David J. Keavney, Jong-Woo Kim, Thomas Z. Ward, Leyi Zhu, Jian Shen, X. M. Cheng, Lixin He, Xiaoshan Xu, Xifan Wu

Xiaoshan Xu Papers

Using combined theoretical and experimental approaches, we studied the structural and electronic origin of the magnetic structure in hexagonal LuFeO3. Besides showing the strong exchange coupling that is consistent with the high magnetic ordering temperature, the previously observed spin reorientation transition is explained by the theoretically calculated magnetic phase diagram. The structural origin of this spin reorientation that is responsible for the appearance of spontaneous magnetization, is identified by theory and verified by x-ray diffraction and absorption experiments.


Active Control Of Magnetoresistance Of Organic Spin Valves Using Ferroelectricity, Dali Sun, Mei Fang, Xiaoshan Xu, Lu Jiang, Hangwen Guo, Yanmei Wang, Wenting Yang, Lifeng Yin, Paul C. Snijders, T. Z. Ward, Zheng Gai, X. -G. Zhang, Ho Nyung Lee, Jian Shen 2014 Fudan University

Active Control Of Magnetoresistance Of Organic Spin Valves Using Ferroelectricity, Dali Sun, Mei Fang, Xiaoshan Xu, Lu Jiang, Hangwen Guo, Yanmei Wang, Wenting Yang, Lifeng Yin, Paul C. Snijders, T. Z. Ward, Zheng Gai, X. -G. Zhang, Ho Nyung Lee, Jian Shen

Xiaoshan Xu Papers

Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, …


Positive Exchange Bias In Epitaxial Permalloy/Mgo Integrated With Si (100), S. S. Rao, J. T. Prater, Fan Wu, S. Nori, D. Kumar, Lanping Yue, Sy_Hwang Liou, Jagdish Narayan 2014 Army Research Office, North Carolina State University

Positive Exchange Bias In Epitaxial Permalloy/Mgo Integrated With Si (100), S. S. Rao, J. T. Prater, Fan Wu, S. Nori, D. Kumar, Lanping Yue, Sy_Hwang Liou, Jagdish Narayan

Sy-Hwang Liou Publications

In magnetic random access memory (MRAM) devices, soft magnetic thin film elements such as permalloy (Py) are used as unit cells of information. The epitaxial integration of these elements with the technologically important substrate Si (100) and a thorough understanding of their magnetic properties are critical for CMOS-based magnetic devices. We report on the epitaxial growth of Ni82.5Fe17.5 (permalloy, Py) on Si (100) using a TiN/MgO buffer layer. Initial stages of growth are characterized by the formation of discrete islands that gradually merge into a continuous film as deposition times are extended. Interestingly, we find that the …


Robust And Adaptive Nonlinear Control Of Limit Cycle Oscillations In Uavs Using Synthetic Jet Actuators, Natalie Ramos Pedroza 2014 Embry-Riddle Aeronautical University

Robust And Adaptive Nonlinear Control Of Limit Cycle Oscillations In Uavs Using Synthetic Jet Actuators, Natalie Ramos Pedroza

Doctoral Dissertations and Master's Theses

Limit cycle oscillations (LCO), also known as utter, cause significant challenges in fight control of unmanned aerial vehicles (UAVs), and could potentially lead to structural damage and catastrophic failures. LCO can be described as vibrational motions in the pitching and plunging displacements of an aircraft wing. Even in low Reynolds number (low-Re) fight regimes, LCO can exceed the limiting boundary for safe UAV fight. Further, as practical considerations motivate the design of smaller, lighter weight UAVs, there is a growing need for UAV systems that do not require heavy mechanical actuators (e.g., ailerons). To address this, the use of synthetic …


Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen 2014 Old Dominion University

Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

Parasitic higher order modes (HOMs) can be severely detrimental to the performance of superconducting cavities. For this reason, the mode spectrum and beam coupling strength must be examined in detail to determine which modes must be damped. One advantage of the spoke cavity geometry is that couplers can be placed on the outer body of the cavity rather than in the beam line space. We present an overview of the HOM properties of spoke cavities and methods for suppressing the most harmful ones.


Narrow-Band Emission In Thomson Sources Operating In The High-Field Regime, Balša Terzić, Kirsten Deitrick, Alicia S. Hofler, Geoffrey A. Krafft 2014 Old Dominion University

Narrow-Band Emission In Thomson Sources Operating In The High-Field Regime, Balša Terzić, Kirsten Deitrick, Alicia S. Hofler, Geoffrey A. Krafft

Physics Faculty Publications

We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the up-shifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Furthermore, we suggest a practical realization of this compensation …


Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair 2014 Old Dominion University

Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair

Computer Science Faculty Publications

We present an update on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order particle tracking (including a symplectic option) for beam transport and the generalized Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, previously computationally prohibitive long-term simulations become tractable. The new code will be used to model the proposed Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab.


The Talbot Effect, Malia Kawamura 2014 Colby College

The Talbot Effect, Malia Kawamura

Honors Theses

The goal of this project is to experimentally investigate the optical Talbot effect and the electron Talbot effect. The Talbot effect is a near-field diffraction effect which occurs when plane waves are incident upon a grating. The Talbot effect creates full grating revivals at integral Talbot lengths and revivals with greater spatial periodicity at fractional Talbot lengths. We use a green helium neon laser and Ronchi rulings to take CCD camera images of the fractional Talbot revivals directly. Additionally, a photodiode records light intensity as a function of time as a second identical grating is moved to verify the presence …


Long-Range Propagation, Interaction, And Dissipation Of Small-Scale Gravity Waves In The Mesosphere And Lower Thermosphere, Christopher J. Heale 2014 Embry-Riddle Aeronautical University - Daytona Beach

Long-Range Propagation, Interaction, And Dissipation Of Small-Scale Gravity Waves In The Mesosphere And Lower Thermosphere, Christopher J. Heale

Doctoral Dissertations and Master's Theses

A 2-D nonlinear, compressible numerical model [Snively and Pasko, 2008] is used in conjunction with ray-theory to investigate the long-range propagation, dissipation and interaction of small-scale gravity waves in the Mesosphere and Lower Thermosphere (MLT) region. The research in this thesis is made up of three distinct studies which build upon each other. The first investigates the thermospheric dissipation of three gravity wave packets representing: (1) A quasi-monochromatic packet, (2) A monochromatic, steady state wave, and (3) A spectrally broad packet, as well as an initial condition specified packet. It is found that dissipation due to molecular viscosity and …


Determining The 7li(N,Gamma) Cross Section Via Coulomb Dissociation Of 8li, R. Izsak, A. Horvath, A. Kiss, Z. Seres, A. Galonsky, C. A. Bertulani, Zs Fueloep, T. Baumann, D. Bazin, K. Ieki, C. Bordeanu, N. Carlin, M. Csanád, F. Deák, Paul A. DeYoung, N. Frank, T. Fukuchi, A. Gade, D. Galaviz, C. R. Hoffman, W. A. Peters, H. Schelin, M. Thoennessen, G. I. Veres 2013 Hope College

Determining The 7li(N,Gamma) Cross Section Via Coulomb Dissociation Of 8li, R. Izsak, A. Horvath, A. Kiss, Z. Seres, A. Galonsky, C. A. Bertulani, Zs Fueloep, T. Baumann, D. Bazin, K. Ieki, C. Bordeanu, N. Carlin, M. Csanád, F. Deák, Paul A. Deyoung, N. Frank, T. Fukuchi, A. Gade, D. Galaviz, C. R. Hoffman, W. A. Peters, H. Schelin, M. Thoennessen, G. I. Veres

Faculty Publications

The applicability of Coulomb dissociation reactions to determine the cross section for the inverse neutron capture reaction was explored using the reaction Li-8(gamma,n)Li-7. A 69.5 MeV/nucleon Li-8 beam was incident on a Pb target, and the outgoing neutron and Li-7 nucleus were measured in coincidence. The deduced (n,gamma) excitation function is consistent with data for the direct capture reaction Li-7(n,gamma) Li-8 and with low-energy effective field theory calculations.


Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil II 2013 Boise State University

Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil Ii

Geoffrey L Beausoleil II

Efficient and reliable materials for gas separation, syngas production, and hybrid nuclear power plants must be capable of reliably operating at a high-temperature range of 700-1000°C and under exposure to highly oxidizing and reducing conditions. Candidate materials for these applications include alkaline metal doped lanthanum ferrite.

In the first study, the impact of A site substitution by different alkaline metals on lanthanum ferrite (LMF, M=Ca, Sr, and Ba) was investigated. The study focused on thermal expansion near the Néel transition temperature and a magneto-elastic contribution to thermal expansion was identified for each sample. Iron oxidation, Fe3+ to Fe4+, was identified …


Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski 2013 University of Tennessee - Knoxville

Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski

Doctoral Dissertations

The Spallation Neutron Source (SNS) located in the Oak Ridge National Laboratory is comprised of a 1 GeV linear H- [H^-] accelerator followed by an accumulator ring that delivers high intensity 1 μs [microsecond] long pulses of 1.5x1014 [1.5x10^14] protons to a liquid mercury target for neutron production by spallation reaction. With its strict 0.01% total beam loss condition, planned power upgrade, and proposed second target station, SNS ring beam-profile diagnostics capable of monitoring evolving beam conditions during high-power conditions are crucial for efficient operation and improvement. By subjecting ionized electrons created during beam interactions with the residual …


Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw 2013 University of Nebraska-Lincoln

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles …


Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar 2013 The University of Western Ontario

Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar

Electronic Thesis and Dissertation Repository

Amongst various surface modification techniques, hyperthermal hydrogen induced cross-linking (HHIC) has been used to modify the surface of polymeric samples. In this novel and innovative technique neutral hydrogen projectiles with appropriate kinetic energy are produced to generate carbon radicals on the impacted surface through the collision-induced C-H bond breaking. Subsequently, this phenomenon results in cross-linking hydrocarbon chains in the treated polymeric samples.

Verifying the validity of cross-linking process through experiments is the target of first part of presented dissertation. Spin-coated poly(methyl methacrylate) (PMMA) films on silicon wafer were exposed to hydrogen projectiles for different durations, while the other conditions related …


Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler 2013 Potsdam Institute for Climate Impact Research

Global Fossil Energy Markets And Climate Change Mitigation: An Analysis With Remind, Nico Bauer, Ioanna Mouratiadou, Gunnar Luderer, Lavinia Baumstark, Robert J. Brecha, Ottmar Edenhofer, Elmar Kriegler

Physics Faculty Publications

We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes …


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen 2013 Purdue University

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …


On The Transition From Diffusion-Limited To Kinetic-Limited Regimes Of Alloy Solidification, Sergey Sobolev 2013 Institute of problems of Chemical Physics, Russia

On The Transition From Diffusion-Limited To Kinetic-Limited Regimes Of Alloy Solidification, Sergey Sobolev

Sergey Sobolev

An abrupt transition from diffusion-limited solidification to diffusionless, kinetic-limited solidification with complete solute trapping is explained as a critical phenomenon which arises due to local non-equilibrium diffusion effects in the bulk liquid. The transition occurs when the interface velocityVpasses through the critical pointV=VD, where V=VDis the bulk liquid diffusive velocity. Analytical expressions are developed for velocity–temperature and velocity–undercooling functions, using local non-equilibrium partition coeffi-cient based on the Jackson et al. kinetic model and the local non-equilibrium diffusion model of Sobolev. The calculated functions dem-onstrate a sharp break in the velocity–undercooling and velocity–temperature relationships at the critical pointV=VD. At this point …


Digital Commons powered by bepress