Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

7,525 Full-Text Articles 14,621 Authors 1,506,246 Downloads 233 Institutions

All Articles in Artificial Intelligence and Robotics

Faceted Search

7,525 full-text articles. Page 1 of 356.

Dilf: Differentiable Rendering-Based Multi-View Image-Language Fusion For Zero-Shot 3d Shape Understanding, Xin Ning, Zaiyang Yu, Lusi Li, Weijun Li, Prayag Tiwari 2024 Chinese Academy of Sciences

Dilf: Differentiable Rendering-Based Multi-View Image-Language Fusion For Zero-Shot 3d Shape Understanding, Xin Ning, Zaiyang Yu, Lusi Li, Weijun Li, Prayag Tiwari

Computer Science Faculty Publications

Zero-shot 3D shape understanding aims to recognize “unseen” 3D categories that are not present in training data. Recently, Contrastive Language–Image Pre-training (CLIP) has shown promising open-world performance in zero-shot 3D shape understanding tasks by information fusion among language and 3D modality. It first renders 3D objects into multiple 2D image views and then learns to understand the semantic relationships between the textual descriptions and images, enabling the model to generalize to new and unseen categories. However, existing studies in zero-shot 3D shape understanding rely on predefined rendering parameters, resulting in repetitive, redundant, and low-quality views. This limitation hinders the model’s …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari 2024 University of Chinese Academy of Sciences

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu 2024 Nanjing University Post & Telecommunication

A Chinese Power Text Classification Algorithm Based On Deep Active Learning, Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Computer Science Faculty Publications

The construction of knowledge graph is beneficial for grid production, electrical safety protection, fault diagnosis and traceability in an observable and controllable way. Highly-precision text classification algorithm is crucial to build a professional knowledge graph in power system. Unfortunately, there are a large number of poorly described and specialized texts in the power business system, and the amount of data containing valid labels in these texts is low. This will bring great challenges to improve the precision of text classification models. To offset the gap, we propose a classification algorithm for Chinese text in the power system based on deep …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso 2024 University of Kentucky

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


Outsourcing Voting To Ai: Can Chatgpt Advise Index Funds On Proxy Voting Decisions?, Chen Wang 2023 University of International Business and Economics

Outsourcing Voting To Ai: Can Chatgpt Advise Index Funds On Proxy Voting Decisions?, Chen Wang

Fordham Journal of Corporate & Financial Law

Released in November 2022, Chat Generative Pre-training Transformer (“ChatGPT”), has risen rapidly to prominence, and its versatile capabilities have already been shown in a variety of fields. Due to ChatGPT’s advanced features, such as extensive pre-training on diverse data, strong generalization ability, fine-tuning capabilities, and improved reasoning, the use of AI in the legal industry could experience a significant transformation. Since small passive funds with low-cost business models generally lack the financial resources to make informed proxy voting decisions that align with their shareholders’ interests, this Article considers the use of ChatGPT to assist small investment funds, particularly small passive …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk 2023 Virginia Commonwealth University

Guilty Machines: On Ab-Sens In The Age Of Ai, Dylan Lackey, Katherine Weinschenk

Critical Humanities

For Lacan, guilt arises in the sublimation of ab-sens (non-sense) into the symbolic comprehension of sen-absexe (sense without sex, sense in the deficiency of sexual relation), or in the maturation of language to sensibility through the effacement of sex. Though, as Slavoj Žižek himself points out in a recent article regarding ChatGPT, the split subject always misapprehends the true reason for guilt’s manifestation, such guilt at best provides a sort of evidence for the inclusion of the subject in the order of language, acting as a necessary, even enjoyable mark of the subject’s coherence (or, more importantly, the subject’s separation …


Tiny Machine Learning For Underwater Image Enhancement: Pruning And Quantizaition Approach, Dr khaled nagaty, The British University in Egypt, Andreas Pester Dr 2023 The British University in Egypt

Tiny Machine Learning For Underwater Image Enhancement: Pruning And Quantizaition Approach, Dr Khaled Nagaty, The British University In Egypt, Andreas Pester Dr

Computer Science

Many people have expressed an interest in underwater image processing in a variety of fields, including underwater vehicle control, archaeology, marine biological studies, etc. Underwater exploration is becoming an increasingly important element of our lives, with applications ranging from underwater marine and creature research to pipeline and communication logistics, military use, touristic and entertainment use. Underwater images suffer from poor visibility, distortion, and poor quality for a variety of causes, including light propagation. The major issue arises when these images must be captured at depths greater than 500 feet and artificial lighting needs to be provided. Efficient algorithms and models …


Learning Mortality Risk For Covid-19 Using Machine Learning And Statistical Methods, Shaoshi Zhang 2023 Western University

Learning Mortality Risk For Covid-19 Using Machine Learning And Statistical Methods, Shaoshi Zhang

Electronic Thesis and Dissertation Repository

This research investigates the mortality risk of COVID-19 patients across different variant waves, using the data from Centers for Disease Control and Prevention (CDC) websites. By analyzing the available data, including patient medical records, vaccination rates, and hospital capacities, we aim to discern patterns and factors associated with COVID-19-related deaths.

To explore features linked to COVID-19 mortality, we employ different techniques such as Filter, Wrapper, and Embedded methods for feature selection. Furthermore, we apply various machine learning methods, including support vector machines, decision trees, random forests, logistic regression, K-nearest neighbours, na¨ıve Bayes methods, and artificial neural networks, to uncover underlying …


The Transformative Integration Of Artificial Intelligence With Cmmc And Nist 800-171 For Advanced Risk Management And Compliance, Mia Lunati 2023 William & Mary

The Transformative Integration Of Artificial Intelligence With Cmmc And Nist 800-171 For Advanced Risk Management And Compliance, Mia Lunati

Cybersecurity Undergraduate Research Showcase

This paper explores the transformative potential of integrating Artificial Intelligence (AI) with established cybersecurity frameworks such as the Cybersecurity Maturity Model Certification (CMMC) and the National Institute of Standards and Technology (NIST) Special Publication 800-171. The thesis argues that the relationship between AI and these frameworks has the capacity to transform risk management in cybersecurity, where it could serve as a critical element in threat mitigation. In addition to addressing AI’s capabilities, this paper acknowledges the risks and limitations of these systems, highlighting the need for extensive research and monitoring when relying on AI. One must understand boundaries when integrating …


Study Of Augmentations On Historical Manuscripts Using Trocr, Erez Meoded 2023 Mississippi State University

Study Of Augmentations On Historical Manuscripts Using Trocr, Erez Meoded

Theses and Dissertations

Historical manuscripts are an essential source of original content. For many reasons, it is hard to recognize these manuscripts as text. This thesis used a state-of-the-art Handwritten Text Recognizer, TrOCR, to recognize a 16th-century manuscript. TrOCR uses a vision transformer to encode the input images and a language transformer to decode them back to text. We showed that carefully preprocessed images and designed augmentations can improve the performance of TrOCR. We suggest an ensemble of augmented models to achieve an even better performance.


Designing An Artificial Immune Inspired Intrusion Detection System, William Hosier Anderson 2023 Mississippi State University

Designing An Artificial Immune Inspired Intrusion Detection System, William Hosier Anderson

Theses and Dissertations

The domain of Intrusion Detection Systems (IDS) has witnessed growing interest in recent years due to the escalating threats posed by cyberattacks. As Internet of Things (IoT) becomes increasingly integrated into our every day lives, we widen our attack surface and expose more of our personal lives to risk. In the same way the Human Immune System (HIS) safeguards our physical self, a similar solution is needed to safeguard our digital self. This thesis presents the Artificial Immune inspired Intrusion Detection System (AIS-IDS), an IDS modeled after the HIS. This thesis proposes an architecture for AIS-IDS, instantiates an AIS-IDS model …


Phenotyping Cotton Compactness Using Machine Learning And Uas Multispectral Imagery, Joshua Carl Waldbieser 2023 Mississippi State University

Phenotyping Cotton Compactness Using Machine Learning And Uas Multispectral Imagery, Joshua Carl Waldbieser

Theses and Dissertations

Breeding compact cotton plants is desirable for many reasons, but current research for this is restricted by manual data collection. Using unmanned aircraft system imagery shows potential for high-throughput automation of this process. Using multispectral orthomosaics and ground truth measurements, I developed supervised models with a wide range of hyperparameters to predict three compactness traits. Extreme gradient boosting using a feature matrix as input was able to predict the height-related metric with R2=0.829 and RMSE=0.331. The breadth metrics require higher-detailed data and more complex models to predict accurately.


Overcoming Foreign Language Anxiety In An Emotionally Intelligent Tutoring System, Daneih Ismail 2023 DePaul University

Overcoming Foreign Language Anxiety In An Emotionally Intelligent Tutoring System, Daneih Ismail

College of Computing and Digital Media Dissertations

Learning a foreign language entails cognitive and emotional obstacles. It involves complicated mental processes that affect learning and emotions. Positive emotions such as motivation, encouragement, and satisfaction increase learning achievement, while negative emotions like anxiety, frustration, and confusion may reduce performance. Foreign Language Anxiety (FLA) is a specific type of anxiety accompanying learning a foreign language. It is considered a main impediment that hinders learning, reduces achievements, and diminishes interest in learning.

Detecting FLA is the first step toward reducing and eventually overcoming it. Previously, researchers have been detecting FLA using physical measurements and self-reports. Using physical measures is direct …


General Population Projection Model With Census Population Data, Takenori Tsuruga 2023 California State University, San Bernardino

General Population Projection Model With Census Population Data, Takenori Tsuruga

Electronic Theses, Projects, and Dissertations

The US Census Bureau offers a wide range of data, and within this array, the American Community Survey 5-Year Estimate (ACS5) serves as a valuable resource for understanding the US population. This project embarks on an exploration of Machine Learning and the Software Development process with the goal of generating effective population projections from ACS5 data. The project aims to provide methods to make predictions for every city and town in the US, encompassing their total population and population divided into 5-year age groups. It's worth noting that while the generation of these projections is grounded in the generalized statistical …


Disease Of Lung Infection Detection Using Cnn Model -Bayesian Optimization, poojitha gutha 2023 California State University, San Bernardino

Disease Of Lung Infection Detection Using Cnn Model -Bayesian Optimization, Poojitha Gutha

Electronic Theses, Projects, and Dissertations

Auscultation plays a role, in diagnosing and identifying diseases during examinations. However, it requires training and expertise, for application. This study aims to tackle this challenge by introducing a model that categorizes respiratory sounds into eight groups: URTI, Healthy, Asthma, COPD, LRTI, Bronchiectasis, Pneumonia, and Bronchiolitis. To achieve this categorization the study utilizes a Convolutional Neural Network (CNN) model that has been optimized using techniques. The dataset used in the study consists of 920 audio samples obtained from 126 patients with durations ranging from 10 to 90 seconds. Impressively, the model demonstrates a noteworthy 83% validation accuracy and an impressive …


The Holistic Archival Personality Profiling Model (Happm): Comprehensive Data Integration For Personality Analysis, James Hutson, Pace Ellsworth 2023 Lindenwood University

The Holistic Archival Personality Profiling Model (Happm): Comprehensive Data Integration For Personality Analysis, James Hutson, Pace Ellsworth

Faculty Scholarship

The traditional approach to biographical profiling, predominantly reliant on limited and fragmented datasets, has frequently resulted in superficial personality understandings. This is largely due to an overemphasis on official records and notable events, neglecting the rich tapestry of everyday experiences and personal interactions that significantly shape personalities. To address this shortcoming, this article introduces a multi-disciplinary methodology, The Holistic Archival Personality Profiling Model (HAPPM), which integrates a diverse array of archival materials, including personal correspondences, social media footprints, and family memorabilia. This approach involves digitizing various data forms, including handwritten documents, into machine-readable text, and then semantically classifying this data …


A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu 2023 East Tennessee State University

A Bridge Between Graph Neural Networks And Transformers: Positional Encodings As Node Embeddings, Bright Kwaku Manu

Electronic Theses and Dissertations

Graph Neural Networks and Transformers are very powerful frameworks for learning machine learning tasks. While they were evolved separately in diverse fields, current research has revealed some similarities and links between them. This work focuses on bridging the gap between GNNs and Transformers by offering a uniform framework that highlights their similarities and distinctions. We perform positional encodings and identify key properties that make the positional encodings node embeddings. We found that the properties of expressiveness, efficiency and interpretability were achieved in the process. We saw that it is possible to use positional encodings as node embeddings, which can be …


Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel 2023 University of South Alabama

Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel

Theses and Dissertations

The increasing complexity of artificial intelligence models has given rise to extensive work toward understanding the inner workings of neural networks. Much of that work, however, has focused on manipulating input data feeding the network to assess their affects on network output or pruning model components after the often-extensive time-consuming training. It is postulated in this study that understanding of neural network can benefit from model structure simplification. In turn, it is shown that model simplification can benefit from investigating network node, the most fundamental unit of neural networks, evolving trends during training. Whereas studies on simplification of model structure …


Discourses Across Periods Of Time, Amanda Raquel Moreno 2023 Lindenwood University

Discourses Across Periods Of Time, Amanda Raquel Moreno

Theses

This literature review explores the revolutionary effect of generative artificial intelligence (AI) and virtual reality (VR) on digital art history, specifically concentrating on their capacity to enable dialogical exchanges with historical figures and deepen the understanding of artworks. This study considers the current state of research, detecting key methodologies, areas of improvement, and possible challenges and ethical concerns. The example historical figure used in this analysis is the iconic Mexican artist Frida Kahlo. Kahlo’s refusal to correspond to a specific artistic style makes her an ideal subject for generative AI and VR-based investigation, offering fresh insights into her work. The …


Digital Commons powered by bepress