Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

54,673 Full-Text Articles 70,964 Authors 20,935,862 Downloads 375 Institutions

All Articles in Computer Sciences

Faceted Search

54,673 full-text articles. Page 1 of 1983.

Detection And Classification Of Diabetic Retinopathy Using Deep Learning Models, Aishat Olatunji 2024 East Tennessee State University

Detection And Classification Of Diabetic Retinopathy Using Deep Learning Models, Aishat Olatunji

Electronic Theses and Dissertations

Healthcare analytics leverages extensive patient data for data-driven decision-making, enhancing patient care and results. Diabetic Retinopathy (DR), a complication of diabetes, stems from damage to the retina’s blood vessels. It can affect both type 1 and type 2 diabetes patients. Ophthalmologists employ retinal images for accurate DR diagnosis and severity assessment. Early detection is crucial for preserving vision and minimizing risks. In this context, we utilized a Kaggle dataset containing patient retinal images, employing Python’s versatile tools. Our research focuses on DR detection using deep learning techniques. We used a publicly available dataset to apply our proposed neural network and …


Detection Of Jamming Attacks In Vanets, Thomas Justice 2024 East Tennessee State University

Detection Of Jamming Attacks In Vanets, Thomas Justice

Undergraduate Honors Theses

A vehicular network is a type of communication network that enables vehicles to communicate with each other and the roadside infrastructure. The roadside infrastructure consists of fixed nodes such as roadside units (RSUs), traffic lights, road signs, toll booths, and so on. RSUs are devices equipped with communication capabilities that allow vehicles to obtain and share real-time information about traffic conditions, weather, road hazards, and other relevant information. These infrastructures assist in traffic management, emergency response, smart parking, autonomous driving, and public transportation to improve roadside safety, reduce traffic congestion, and enhance the overall driving experience. However, communication between the …


Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi Segmentation In A Communication Restricted Domain, Huzeyfe M. Kocabas 2024 Utah State University

Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi Segmentation In A Communication Restricted Domain, Huzeyfe M. Kocabas

All Graduate Theses and Dissertations, Fall 2023 to Present

Exploring unknown environments using multiple robots poses a complex challenge, particularly in situations where communication between robots is either impossible or limited. Existing exploration techniques exhibit research gaps due to unrealistic communication assumptions or the computational complexities associated with exploration strategies in unfamiliar domains. In our investigation of multi-robot exploration in unknown areas, we employed various exploration and coordination techniques, evaluating their performance in terms of robustness and efficiency across different levels of environmental complexity.

Our research is centered on optimizing the exploration process through strategic agent distribution. We initially address the challenge of city roadway coverage, aiming to minimize …


Pedestrian Pathing Prediction Using Complex Contextual Behavioral Data In High Foot Traffic Settings, Laurel Bingham 2024 Utah State University

Pedestrian Pathing Prediction Using Complex Contextual Behavioral Data In High Foot Traffic Settings, Laurel Bingham

All Graduate Theses and Dissertations, Fall 2023 to Present

Ensuring the safe integration of autonomous vehicles into real-world environments requires a comprehensive understanding of pedestrian behavior. This study addresses the challenge of predicting the movement and crossing intentions of pedestrians, a crucial aspect in the development of fully autonomous vehicles.

The research focuses on leveraging Honda's TITAN dataset, comprising 700 unique clips captured by moving vehicles in high-foot-traffic areas of Tokyo, Japan. Each clip provides detailed contextual information, including human-labeled tags for individuals and vehicles, encompassing attributes such as age, motion status, and communicative actions. Long Short-Term Memory (LSTM) networks were employed and trained on various combinations of contextual …


Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi LI, Guansong PANG, Xiao BAI, Jin ZHENG, Lei ZHOU, Xin NING 2024 Singapore Management University

Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi Li, Guansong Pang, Xiao Bai, Jin Zheng, Lei Zhou, Xin Ning

Research Collection School Of Computing and Information Systems

Zero-Shot Learning (ZSL) focuses on classifying samples of unseen classes with only their side semantic information presented during training. It cannot handle real-life, open-world scenarios where there are test samples of unknown classes for which neither samples (e.g., images) nor their side semantic information is known during training. Open-Set Recognition (OSR) is dedicated to addressing the unknown class issue, but existing OSR methods are not designed to model the semantic information of the unseen classes. To tackle this combined ZSL and OSR problem, we consider the case of “Zero-Shot Open-Set Recognition” (ZS-OSR), where a model is trained under the ZSL …


Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura 2024 Utah State University

Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura

Publications

This paper presents a novel approach for predicting the outcomes of elementary students’ participation in computer science (CS) instruction by using exit tickets, a type of practical measure, where students provide rapid feedback on their instructional experiences. Such feedback can help teachers to inform ongoing teaching and instructional practices. We fit a Structural Equation Model to examine whether students' perceptions of enjoyment, ease, and connections between mathematics and CS in an integrated lesson predicted their affective outcomes in self-efficacy, interest, and CS identity, collected in a pre- post- survey. We found that practical measures can validly measure student experiences.


Combating Financial Crimes With Unsupervised Learning Techniques: Clustering And Dimensionality Reduction For Anti-Money Laundering, Ahmed N. Bakry, Almohammady S. Alsharkawy, Mohamed S. Farag, Kamal R. Raslan 2024 Faculty of Science Al-Azhar University Cairo, Egypt

Combating Financial Crimes With Unsupervised Learning Techniques: Clustering And Dimensionality Reduction For Anti-Money Laundering, Ahmed N. Bakry, Almohammady S. Alsharkawy, Mohamed S. Farag, Kamal R. Raslan

Al-Azhar Bulletin of Science

Anti-Money Laundering (AML) is a crucial task in ensuring the integrity of financial systems. One keychallenge in AML is identifying high-risk groups based on their behavior. Unsupervised learning, particularly clustering, is a promising solution for this task. However, the use of hundreds of features todescribe behavior results in a highdimensional dataset that negatively impacts clustering performance.In this paper, we investigate the effectiveness of combining clustering method agglomerative hierarchicalclustering with four dimensionality reduction techniques -Independent Component Analysis (ICA), andKernel Principal Component Analysis (KPCA), Singular Value Decomposition (SVD), Locality Preserving Projections (LPP)- to overcome the issue of high-dimensionality in AML data and …


Graph Neural Network Guided By Feature Selection And Centrality Measures For Node Classification On Homophilic And Heterophily Graphs, Asmaa M. Mahmoud, Heba F. Eid, Abeer S. Desuky, Hoda A. Ali 2024 Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt.

Graph Neural Network Guided By Feature Selection And Centrality Measures For Node Classification On Homophilic And Heterophily Graphs, Asmaa M. Mahmoud, Heba F. Eid, Abeer S. Desuky, Hoda A. Ali

Al-Azhar Bulletin of Science

One of the most recent developments in the fields of deep learning and machine learning is Graph Neural Networks (GNNs). GNNs core task is the feature aggregation stage, which is carried out over the node's neighbours without taking into account whether the features are relevant or not. Additionally, the majority of these existing node representation techniques only consider the network's topology structure while completely ignoring the centrality information. In this paper, a new technique for explaining graph features depending on four different feature selection approaches and centrality measures in order to identify the important nodes and relevant node features is …


Multi-Aspect Rule-Based Ai: Methods, Taxonomy, Challenges And Directions Towards Automation, Intelligence And Transparent Cybersecurity Modeling For Critical Infrastructures, Iqbal H. Sarker, Helge Janicke, Mohamed A. Ferrag, Alsharif Abuadbba 2024 Edith Cowan University

Multi-Aspect Rule-Based Ai: Methods, Taxonomy, Challenges And Directions Towards Automation, Intelligence And Transparent Cybersecurity Modeling For Critical Infrastructures, Iqbal H. Sarker, Helge Janicke, Mohamed A. Ferrag, Alsharif Abuadbba

Research outputs 2022 to 2026

Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets, and services that are vital for the functioning and well-being of a society, economy, or nation. However, the rapid proliferation and dynamism of today's cyber threats in digital environments may disrupt CI functionalities, which would have a debilitating impact on public safety, economic stability, and national security. This has led to much interest in effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-based modeling is potentially significant. In this paper, we take into account “Rule-based AI” rather than other black-box solutions since model transparency, i.e., human …


Auditory Vigilance Decrement In Drivers Of A Partially Automated Vehicle: A Pilot Study Using A High-Fidelity Driving Simulator, Luca Brooks, Jeffrey Glassman, Yusuke Yamani 2024 Old Dominion University

Auditory Vigilance Decrement In Drivers Of A Partially Automated Vehicle: A Pilot Study Using A High-Fidelity Driving Simulator, Luca Brooks, Jeffrey Glassman, Yusuke Yamani

Undergraduate Research Symposium

Vigilance decrement is the decline in the ability to monitor and detect behaviorally important signals over time, a phenomenon that can arise even after 30 minutes of watch (Mackworth, 1948). Recently, McCarley & Yamani (2021) found bias shifts, sensitivity losses, and attentional lapses contribute to vigilance decrement, but when each effect is isolated, there was little evidence that sensitivity loss affected vigilance decrement. With the introduction of partially autonomous vehicles, vigilance decrement may be problematic for drivers who must monitor the autonomous system for failures and takeover requests. Thus, this pilot study aims to extend McCarley and Yamani (2021) and …


Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami 2024 Old Dominion University

Improving Educational Delivery And Content In Juvenile Detention Centers, Yomna Elmousalami

Undergraduate Research Symposium

Students in juvenile detention centers have the greatest need to receive improvements in educational delivery and content; however, they are one of the “truly disadvantaged” populations in terms of receiving those improvements. This work presents a qualitative data analysis based on a focus group meeting with stakeholders at a local Juvenile Detention Center. The current educational system in juvenile detention centers is based on paper worksheets, single-room style teaching methods, outdated technology, and a shortage of textbooks and teachers. In addition, detained students typically have behavioral challenges that are deemed "undesired" in society. As a result, many students miss classes …


Deep Learning Can Be Used To Classify And Segment Plant Cell Types In Xylem Tissue, Reem Al Dabagh, Benjamin Shin, Sean Wu, Fabien Scalzo, Helen Holmlund, Jessica Lee, Chris Ghim, Samuel Fitzgerald, Marinna Grijalva 2024 Pepperdine University

Deep Learning Can Be Used To Classify And Segment Plant Cell Types In Xylem Tissue, Reem Al Dabagh, Benjamin Shin, Sean Wu, Fabien Scalzo, Helen Holmlund, Jessica Lee, Chris Ghim, Samuel Fitzgerald, Marinna Grijalva

Seaver College Research And Scholarly Achievement Symposium

Studies of plant anatomical traits are essential for understanding plant physiological adaptations to stressful environments. For example, shrubs in the chaparral ecosystem of southern California have adapted various xylem anatomical traits that help them survive drought and freezing. Previous studies have shown that xylem conduits with a narrow diameter allows certain chaparral shrub species to survive temperatures as low as -12 C. Other studies have shown that increased cell wall thickness of fibers surrounding xylem vessels improves resistance to water stress-induced embolism formation. Historically, these studies on xylem anatomical traits have relied on hand measurements of cells in light micrographs, …


Intelligent Protection Scheme Using Combined Stockwell-Transform And Deep Learning-Based Fault Diagnosis For The Active Distribution System, LATHA MAHESWARI KANDASAMY, KANAKARAJ JAGANATHAN 2024 TÜBİTAK

Intelligent Protection Scheme Using Combined Stockwell-Transform And Deep Learning-Based Fault Diagnosis For The Active Distribution System, Latha Maheswari Kandasamy, Kanakaraj Jaganathan

Turkish Journal of Electrical Engineering and Computer Sciences

This study aims to perform fast fault diagnosis and intelligent protection in an active distribution network (ADN) with high renewable energy penetration. Several time-domain simulations are carried out in EMTP-RV to extract time-synchronized current and voltage data. The Stockwell transform (ST) was used in MATLAB/SIMULINK to preprocess these input datasets to train the adaptive fault diagnosis deep convolutional neural network (AFDDCNN) for fault location identification, fault type identification, and fault phase-detection for different penetration levels. Based on the AFDDCNN output, the intelligent protection scheme (IDOCPS) generates the signal for isolating a faulty section of the ADN. An intelligent fault diagnosis …


Advanced Hyperthermia Treatment: Optimizing Microwave Energy Focus For Breast Cancer Therapy, Burak ACAR, TUBA YILMAZ ABDOLSAHEB, Ali YAPAR 2024 Istanbul Technical University

Advanced Hyperthermia Treatment: Optimizing Microwave Energy Focus For Breast Cancer Therapy, Burak Acar, Tuba Yilmaz Abdolsaheb, Ali Yapar

Turkish Journal of Electrical Engineering and Computer Sciences

This paper presents a fast antenna phase optimization scheme to enable microwave power focusing for breast cancer hyperthermia. The power focusing is achieved through the maximization of the deposited electric field on the target malignant tumor tissue. To do so, a malignant breast tumor, the surrounding breast medium, and the skin of the breast are modeled as a cylindrical structure composed of eccentric cylinders, and electric field distribution is computed analytically in terms of cylindrical harmonics. This approach minimized the computational cost and simplified the breast medium model. To ensure applicability across various breast types, the dielectric properties (DPs) of …


Consensus-Based Virtual Leader Tracking Algorithm For Flight Formation Control Of Swarm Uavs, berat yıldız, Akif DURDU, Ahmet KAYABAŞI 2024 TÜBİTAK

Consensus-Based Virtual Leader Tracking Algorithm For Flight Formation Control Of Swarm Uavs, Berat Yıldız, Akif Durdu, Ahmet Kayabaşi

Turkish Journal of Electrical Engineering and Computer Sciences

Technological developments in industrial areas also impact unmanned aerial vehicles (UAVs). Recent improvements in both software and hardware have significantly increased the use of many UAVs in social and military fields. In particular, the widespread use of these vehicles in social areas such as entertainment, shipping, transportation, and delivery and military areas such as surveillance, tracking, and offensive measures has accelerated the research on swarm systems. This study examined the previous investigations on swarm UAVs and aimed to create a more efficient algorithm. The effectiveness of the proposed algorithm was compared with other leader-based applications. A swarm consisting of 5 …


Cascade Controller Design Via Controller Synthesis For Load Frequency Control Of Electrical Power Systems, Yavuz GÜLER, Mustafa NALBANTOĞLU, IBRAHIM KAYA 2024 TÜBİTAK

Cascade Controller Design Via Controller Synthesis For Load Frequency Control Of Electrical Power Systems, Yavuz Güler, Mustafa Nalbantoğlu, Ibrahim Kaya

Turkish Journal of Electrical Engineering and Computer Sciences

The regulation of tie-line electricity flow and frequency of electrical power systems (EPS) is crucial for ensuring their robustness to parameter changes and efficient management of disturbances. To this end, a novel cascade control design approach utilizing a serial Proportional-Integral-Derivative controller with a filter (PIDF) is proposed in this paper. The parameters of the controllers are derived analytically, and it is employed in both loops of the cascade control system to regulate the Load Frequency Control (LFC) of EPS. The implementation of PIDF controllers in both loops is utilized in the cascade control scheme for various power systems featuring different …


Atomic Comagnetometer Gyroscopes For Inertial Navigation Systems: A Review, MURAT SALIM KARABINAOGLU, Bekir ÇAKIR, Mustafa Engin BAŞOĞLU 2024 TÜBİTAK

Atomic Comagnetometer Gyroscopes For Inertial Navigation Systems: A Review, Murat Salim Karabinaoglu, Bekir Çakir, Mustafa Engin Başoğlu

Turkish Journal of Electrical Engineering and Computer Sciences

In recent years, developments in quantum sensing, laser, and atomic sensor technologies have also enabled advancement in the field of quantum navigation. Atomic-based gyroscopes have emerged as one of the most critical atomic sensors in this respect. In this review, a brief technology statement of spin exchange relaxation free (SERF) and nuclear magnetic resonance (NMR) type atomic comagnetometer gyroscope (CG) is presented. Related studies in the literature have been gathered, and the fundamental compositions of CGs with technical basics are presented. A comparison of SERF and NMR CGs is provided. A basic simulation of SERF CG was carried out because …


Uncovering And Mitigating Spurious Features In Domain Generalization, SAEED KARIMI, HAMDİ DİBEKLİOĞLU 2024 TÜBİTAK

Uncovering And Mitigating Spurious Features In Domain Generalization, Saeed Karimi, Hamdi̇ Di̇bekli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Domain generalization (DG) techniques strive to attain the ability to generalize to an unfamiliar target domain solely based on training data originating from the source domains. Despite the increasing attention given to learning from multiple training domains through the application of various forms of invariance across those domains, the enhancements observed in comparison to ERM are nearly insignificant under specified evaluation rules. In this paper, we demonstrate that the disentanglement of spurious and invariant features is a challenging task in conventional training since ERM simply minimizes the loss and does not exploit invariance among domains. To address this issue, we …


Lower Data Attacks On Advanced Encryption Standard, ORHUN KARA 2024 TÜBİTAK

Lower Data Attacks On Advanced Encryption Standard, Orhun Kara

Turkish Journal of Electrical Engineering and Computer Sciences

The Advanced Encryption Standard (AES) is one of the most commonly used and analyzed encryption algorithms. In this work, we present new combinations of some prominent attacks on AES, achieving new records in data requirements among attacks, utilizing only 2 4 and 2 16 chosen plaintexts (CP) for 6-round and 7-round AES 192/256, respectively. One of our attacks is a combination of a meet-in-the-middle (MiTM) attack with a square attack mounted on 6-round AES-192/256 while another attack combines an MiTM attack and an integral attack, utilizing key space partitioning technique, on 7-round AES-192/256. Moreover, we illustrate that impossible differential (ID) …


Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer 2024 Olivet Nazarene University

Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer

ELAIA

Asteroid detection is a common field in astronomy for planetary defense, requiring observations from survey telescopes to detect and classify different objects. The amount of data collected each night is continually increasing as new and better-designed telescopes begin collecting information each year. This amount of data is quickly becoming unmanageable, and researchers are looking for ways to better process this data. The most feasible current solution is to implement computer algorithms to automatically detect these sources and then use machine learning to create a more efficient and accurate method of classification. Implementation of such methods has previously focused on larger …


Digital Commons powered by bepress