Ghostparty Video Game,
2024
California Polytechnic State University, San Luis Obispo
Ghostparty Video Game, Tyler Remlinger Hart
Computer Science and Software Engineering
GhostParty is a Unity game that uses a MongoDB database to store players' gameplay values. These values are used to create "Ghosts" that players can compete with in various mini-games. I found that this form of multiplayer using ghosts can create a good gameplay experience without live multiplayer interactions.
Software Jimenae Allows Efficient Dynamic Simulations Of Boolean Networks, Centrality And System State Analysis,
2023
Biozentrum der Universität Würzburg
Software Jimenae Allows Efficient Dynamic Simulations Of Boolean Networks, Centrality And System State Analysis, Martin Kaltdorf, Tim Breitenbach, Stefan Karl, Maximilian Fuchs, David Komla Kessie, Eric Psota, Martina Prelog, Edita Sarukhanyan, Regina Ebert, Franz Jakob, Gudrun Dandekar, Muhammad Naseem, Chunguang Liang, Thomas Dandekar
All Works
The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity …
Key Communication Technologies, Applications, Protocols And Future Guides For Iot-Assisted Smart Grid Systems: A Review,
2023
Edith Cowan University
Key Communication Technologies, Applications, Protocols And Future Guides For Iot-Assisted Smart Grid Systems: A Review, Md Ohirul Qays, Iftekhar Ahmad, Ahmed Abu-Siada, Md Liton Hossain, Farhana Yasmin
Research outputs 2022 to 2026
Towards addressing the concerns of conventional power systems including reliability and security, establishing modern Smart Grids (SGs) has been given much attention by the global electric utility applications during the last few years. One of the key advantageous of SGs is its ability for two-way communication and bi-directional power flow that facilitates the inclusion of distributed energy resources, real time monitoring and self-healing systems. As such, the SG employs a large number of digital devices that are installed at various locations to enrich the observability and controllability of the system. This calls for the necessity of employing Internet of Things …
The Internet Of Things (Iot) In Healthcare: Taking Stock And Moving Forward,
2023
Edith Cowan University
The Internet Of Things (Iot) In Healthcare: Taking Stock And Moving Forward, Abderahman Rejeb, Karim Rejeb, Horst Treiblmaier, Andrea Appolloni, Salem Alghamdi, Yaser Alhasawi, Mohammad Iranmanesh
Research outputs 2022 to 2026
Recent improvements in the Internet of Things (IoT) have allowed healthcare to evolve rapidly. This article summarizes previous studies on IoT applications in healthcare. A comprehensive review and a bibliometric analysis were performed to objectively summarize the growth of IoT research in healthcare. To begin, 2,990 journal articles were carefully selected for further investigation. These publications were analyzed based on various bibliometric metrics, including publication year, journals, authors, institutions, and countries. Keyword co-occurrence and co-citation networks were generated to unravel significant research hotspots. The findings show that IoT research has received considerable interest from the healthcare community. Based on the …
Covid-19 In Casinos: Analysis Of Covid-19 Contamination And Spread With Economic Impact Assessment,
2023
nQube Data Science Inc.
Covid-19 In Casinos: Analysis Of Covid-19 Contamination And Spread With Economic Impact Assessment, Anastasia (Stasi) D. Baran, Jason D. Fiege
International Conference on Gambling & Risk Taking
Abstract:
The COVID-19 pandemic caused tremendous disruption for casinos, with the virus causing various lengths of shutdowns, capacity restrictions, and social distancing strategies such as machine removals or section closures. Although most of the world has now eased off these measures, it is important to review lessons learned to understand, and better prepare for similar circumstances in the future. We present Monte Carlo slot floor simulation software customized to simulate players spreading COVID-19 on the slot floor. We simulate the amount of touch surface contamination; the number of potential surface contact exposure events per day, and a proximity exposures statistic …
Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research,
2023
nQube Data Science Inc.
Statistical Methods To Generate Artificial Slot Floor Data For The Advancement Of Casino Related Research, Courtney Bonner, Anastasia (Stasi) D. Baran, Jason D. Fiege, Saman Muthukumarana
International Conference on Gambling & Risk Taking
Abstract:
A common difficulty when researching gambling topics is the availability of high-quality data sets for development and testing. Due to the high level of secrecy within the gambling industry, if data is obtained for research purposes it is often prohibitively obfuscated, incomplete, or aggregated. Although these data have allowed for advancement in academic work, it leaves both the researchers and readers left wondering about what would be possible if more detailed data sets were available. To mitigate the paucity of data available to researchers, we present a Markov chain-based statistical process for producing artificial event data for a simulated …
Predicting Flux Data For Exoplanet Detection.,
2023
Pace University
Predicting Flux Data For Exoplanet Detection., Ronald Kroening
Honors College Theses
This paper will focus on utilizing five different methods of machine learning models to properly classify celestial bodies orbiting a star as an exoplanet or a false positive. We will be utilizing a recurrent neural network (RNN), a logistical regression model (LR), and a Random Forest Classifier (RF). The focus of the data set was to improve access to balanced data in the form of extracted features and time series graphs, as well as looking into potential solutions for previous shortcomings outlined in prior work, specifically relating to logistical regression models. Training data was assembled from Astronet, a pipeline that …
The Locals Casino As A Social Network – Can An Interconnected Community Of Players Detect Differences In Hold?,
2023
nQube Data Science Inc.
The Locals Casino As A Social Network – Can An Interconnected Community Of Players Detect Differences In Hold?, Jason D. Fiege, Anastasia (Stasi) D. Baran
International Conference on Gambling & Risk Taking
Abstract
It is difficult for individual players to detect differences in theoretical hold between slot machines without playing an unrealistically large number of games. This difficulty occurs because the fractional loss incurred by a player converges only slowly to the theoretical hold in the presence of volatility designed into slot pay tables. Nevertheless, many operators believe that players can detect changes in hold or differences compared to competition, especially in a locals casino market, and therefore resist increasing holds. Instead of investigating whether individual players can detect differences in hold, we ask whether a population of casino regulars who share …
Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems,
2023
Army Cyber Institute, U.S. Military Academy
Constrained Optimization Based Adversarial Example Generation For Transfer Attacks In Network Intrusion Detection Systems, Marc Chale, Bruce Cox, Jeffery Weir, Nathaniel D. Bastian
ACI Journal Articles
Deep learning has enabled network intrusion detection rates as high as 99.9% for malicious network packets without requiring feature engineering. Adversarial machine learning methods have been used to evade classifiers in the computer vision domain; however, existing methods do not translate well into the constrained cyber domain as they tend to produce non-functional network packets. This research views the payload of network packets as code with many functional units. A meta-heuristic based generative model is developed to maximize classification loss of packet payloads with respect to a surrogate model by repeatedly substituting units of code with functionally equivalent counterparts. The …
Algorithmic Bias: Causes And Effects On Marginalized Communities,
2023
University of San Diego
Algorithmic Bias: Causes And Effects On Marginalized Communities, Katrina M. Baha
Undergraduate Honors Theses
Individuals from marginalized backgrounds face different healthcare outcomes due to algorithmic bias in the technological healthcare industry. Algorithmic biases, which are the biases that arise from the set of steps used to solve or analyze a problem, are evident when people from marginalized communities use healthcare technology. For example, many pulse oximeters, which are the medical devices used to measure oxygen saturation in the blood, are not able to accurately read people who have darker skin tones. Thus, people with darker skin tones are not able to receive proper health care due to their pulse oximetry data being inaccurate. This …
Vitreoscilla Globin Promoter Cloning And Testing In Escherichia Coli,
2023
Rose-Hulman Institute of Technology
Vitreoscilla Globin Promoter Cloning And Testing In Escherichia Coli, Lauren J. Coffey
Rose-Hulman Undergraduate Research Publications
No abstract provided.
The Model 2.0 And Friends: An Interim Report,
2023
University of California, San Diego
The Model 2.0 And Friends: An Interim Report, Garrison W. Cottrell, Martha Gahl, Shubham Kulkarni, Shashank Venkatramani, Yash Shah, Keyu Long, Xuzhe Zhi, Shivaank Agarwal, Cody Li, Jingyuan He, Thomas Fischer
MODVIS Workshop
Last year, I reported on preliminary results of an anatomically-inspired deep learning model of the visual system and its role in explaining the face inversion effect. This year, I will report on new results and some variations on network architectures that we have explored, mainly as a way to generate discussion and get feedback. This is by no means a polished, final presentation!
We look forward to the group’s suggestions for these projects.
Automated Delineation Of Visual Area Boundaries And Eccentricities By A Cnn Using Functional, Anatomical, And Diffusion-Weighted Mri Data,
2023
University of Washington
Automated Delineation Of Visual Area Boundaries And Eccentricities By A Cnn Using Functional, Anatomical, And Diffusion-Weighted Mri Data, Noah C. Benson, Bogeng Song, Toshikazu Miyata, Hiromasa Takemura, Jonathan Winawer
MODVIS Workshop
Delineating visual field maps and iso-eccentricities from fMRI data is an important but time-consuming task for many neuroimaging studies on the human visual cortex because the traditional methods of doing so using retinotopic mapping experiments require substantial expertise as well as scanner, computer, and human time. Automated methods based on gray-matter anatomy or a combination of anatomy and functional mapping can reduce these requirements but are less accurate than experts. Convolutional Neural Networks (CNNs) are powerful tools for automated medical image segmentation. We hypothesize that CNNs can define visual area boundaries with high accuracy. We trained U-Net CNNs with ResNet18 …
How Object Segmentation And Perceptual Grouping Emerge In Noisy Variational Autoencoders,
2023
Swiss Federal Institute of Technology, Lausanne
How Object Segmentation And Perceptual Grouping Emerge In Noisy Variational Autoencoders, Ben Lonnqvist, Zhengqing Wu, Michael H. Herzog
MODVIS Workshop
Many animals and humans can recognize and segment objects from their backgrounds. Whether object segmentation is necessary for object recognition has long been a topic of debate. Deep neural networks (DNNs) excel at object recognition, but not at segmentation tasks - this has led to the belief that object recognition and segmentation are separate mechanisms in visual processing. Here, however, we show evidence that in variational autoencoders (VAEs), segmentation and faithful representation of data can be interlinked. VAEs are encoder-decoder models that learn to represent independent generative factors of the data as a distribution in a very small bottleneck layer; …
A Dynamical Model Of Binding In Visual Cortex During Incremental Grouping And Search,
2023
Institute for Neural Infromation Processing, Ulm University
A Dynamical Model Of Binding In Visual Cortex During Incremental Grouping And Search, Daniel Schmid, Daniel A. Braun, Heiko Neumann
MODVIS Workshop
Binding of visual information is crucial for several perceptual tasks. To incrementally group an object, elements in a space-feature neighborhood need to be bound together starting from an attended location (Roelfsema, TICS, 2005). To perform visual search, candidate locations and cued features must be evaluated conjunctively to retrieve a target (Treisman&Gormican, Psychol Rev, 1988). Despite different requirements on binding, both tasks are solved by the same neural substrate. In a model of perceptual decision-making, we give a mechanistic explanation for how this can be achieved. The architecture consists of a visual cortex module and a higher-order thalamic module. While the …
An Assistive Interface For Displaying Novice's Code History,
2023
Washington University in St. Louis
An Assistive Interface For Displaying Novice's Code History, Ruiwei Xiao
McKelvey School of Engineering Theses & Dissertations
As Teaching Assistant (TA) programs grow in number and size in introductory CS courses, TAs play a significant role in novice programmers' experience and contribute to their success. However, many TAs are also relative beginners themselves and thus have limited experience in programming and teaching. Thus the effectiveness and consistency of their guidance can vary significantly. To improve interaction quality and assist TAs in providing better support, we examine the difficulties encountered by inexperienced TAs in previous literature and then identify the potential for the high cognitive load as an unaddressed difficulty that may prevent new TAs from initiating effective …
Feature Selection From Clinical Surveys Using Semantic Textual Similarity,
2023
Washington University in St. Louis
Feature Selection From Clinical Surveys Using Semantic Textual Similarity, Benjamin Warner
McKelvey School of Engineering Theses & Dissertations
Survey data collected from human subjects can contain a high number of features while having a comparatively low quantity of examples. Machine learning models that attempt to predict outcomes from survey data under these conditions can overfit and result in poor generalizability. One remedy to this issue is feature selection, which attempts to select an optimal subset of features to learn upon. A relatively unexplored source of information in the feature selection process is the usage of textual names of features, which may be semantically indicative of which features are relevant to a target outcome. The relationships between feature names …
Understanding The Impacts Of Topobathymetric Data On Storm Surge Model Predictions,
2023
The University of Southern Mississippi
Understanding The Impacts Of Topobathymetric Data On Storm Surge Model Predictions, Sydni Crain
Master's Theses
The topobathymetric characteristics of a region are regularly altered by natural and anthropogenic causes. This directly impacts the resulting storm surge during a hurricane. The primary goal of this research was to gain a better understanding of the impact that topography and bathymetry have on storm surge models, particularly the Advanced Circulation (ADCIRC) Model. Hurricane Zeta (2020) and Hurricane Ida (2021) were chosen as case studies; therefore, the Gulf of Mexico (GOM) was chosen as the study site. This research was completed by comparing ADCIRC storm surge results which were based on older, lower-resolution data with results derived from more …
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning,
2023
Southern Methodist University
Optimizing Tumor Xenograft Experiments Using Bayesian Linear And Nonlinear Mixed Modelling And Reinforcement Learning, Mary Lena Bleile
Statistical Science Theses and Dissertations
Tumor xenograft experiments are a popular tool of cancer biology research. In a typical such experiment, one implants a set of animals with an aliquot of the human tumor of interest, applies various treatments of interest, and observes the subsequent response. Efficient analysis of the data from these experiments is therefore of utmost importance. This dissertation proposes three methods for optimizing cancer treatment and data analysis in the tumor xenograft context. The first of these is applicable to tumor xenograft experiments in general, and the second two seek to optimize the combination of radiotherapy with immunotherapy in the tumor xenograft …
Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method,
2023
Mississippi State University
Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England
Theses and Dissertations
This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow …
