Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

54,652 Full-Text Articles 70,924 Authors 20,935,862 Downloads 375 Institutions

All Articles in Computer Sciences

Faceted Search

54,652 full-text articles. Page 1 of 1982.

Detection And Classification Of Diabetic Retinopathy Using Deep Learning Models, Aishat Olatunji 2024 East Tennessee State University

Detection And Classification Of Diabetic Retinopathy Using Deep Learning Models, Aishat Olatunji

Electronic Theses and Dissertations

Healthcare analytics leverages extensive patient data for data-driven decision-making, enhancing patient care and results. Diabetic Retinopathy (DR), a complication of diabetes, stems from damage to the retina’s blood vessels. It can affect both type 1 and type 2 diabetes patients. Ophthalmologists employ retinal images for accurate DR diagnosis and severity assessment. Early detection is crucial for preserving vision and minimizing risks. In this context, we utilized a Kaggle dataset containing patient retinal images, employing Python’s versatile tools. Our research focuses on DR detection using deep learning techniques. We used a publicly available dataset to apply our proposed neural network and …


Detection Of Jamming Attacks In Vanets, Thomas Justice 2024 East Tennessee State University

Detection Of Jamming Attacks In Vanets, Thomas Justice

Undergraduate Honors Theses

A vehicular network is a type of communication network that enables vehicles to communicate with each other and the roadside infrastructure. The roadside infrastructure consists of fixed nodes such as roadside units (RSUs), traffic lights, road signs, toll booths, and so on. RSUs are devices equipped with communication capabilities that allow vehicles to obtain and share real-time information about traffic conditions, weather, road hazards, and other relevant information. These infrastructures assist in traffic management, emergency response, smart parking, autonomous driving, and public transportation to improve roadside safety, reduce traffic congestion, and enhance the overall driving experience. However, communication between the …


Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi Segmentation In A Communication Restricted Domain, Huzeyfe M. Kocabas 2024 Utah State University

Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi Segmentation In A Communication Restricted Domain, Huzeyfe M. Kocabas

All Graduate Theses and Dissertations, Fall 2023 to Present

Exploring unknown environments using multiple robots poses a complex challenge, particularly in situations where communication between robots is either impossible or limited. Existing exploration techniques exhibit research gaps due to unrealistic communication assumptions or the computational complexities associated with exploration strategies in unfamiliar domains. In our investigation of multi-robot exploration in unknown areas, we employed various exploration and coordination techniques, evaluating their performance in terms of robustness and efficiency across different levels of environmental complexity.

Our research is centered on optimizing the exploration process through strategic agent distribution. We initially address the challenge of city roadway coverage, aiming to minimize …


Pedestrian Pathing Prediction Using Complex Contextual Behavioral Data In High Foot Traffic Settings, Laurel Bingham 2024 Utah State University

Pedestrian Pathing Prediction Using Complex Contextual Behavioral Data In High Foot Traffic Settings, Laurel Bingham

All Graduate Theses and Dissertations, Fall 2023 to Present

Ensuring the safe integration of autonomous vehicles into real-world environments requires a comprehensive understanding of pedestrian behavior. This study addresses the challenge of predicting the movement and crossing intentions of pedestrians, a crucial aspect in the development of fully autonomous vehicles.

The research focuses on leveraging Honda's TITAN dataset, comprising 700 unique clips captured by moving vehicles in high-foot-traffic areas of Tokyo, Japan. Each clip provides detailed contextual information, including human-labeled tags for individuals and vehicles, encompassing attributes such as age, motion status, and communicative actions. Long Short-Term Memory (LSTM) networks were employed and trained on various combinations of contextual …


Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi LI, Guansong PANG, Xiao BAI, Jin ZHENG, Lei ZHOU, Xin NING 2024 Singapore Management University

Learning Adversarial Semantic Embeddings For Zero-Shot Recognition In Open Worlds, Tianqi Li, Guansong Pang, Xiao Bai, Jin Zheng, Lei Zhou, Xin Ning

Research Collection School Of Computing and Information Systems

Zero-Shot Learning (ZSL) focuses on classifying samples of unseen classes with only their side semantic information presented during training. It cannot handle real-life, open-world scenarios where there are test samples of unknown classes for which neither samples (e.g., images) nor their side semantic information is known during training. Open-Set Recognition (OSR) is dedicated to addressing the unknown class issue, but existing OSR methods are not designed to model the semantic information of the unseen classes. To tackle this combined ZSL and OSR problem, we consider the case of “Zero-Shot Open-Set Recognition” (ZS-OSR), where a model is trained under the ZSL …


Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura 2024 Utah State University

Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura

Publications

This paper presents a novel approach for predicting the outcomes of elementary students’ participation in computer science (CS) instruction by using exit tickets, a type of practical measure, where students provide rapid feedback on their instructional experiences. Such feedback can help teachers to inform ongoing teaching and instructional practices. We fit a Structural Equation Model to examine whether students' perceptions of enjoyment, ease, and connections between mathematics and CS in an integrated lesson predicted their affective outcomes in self-efficacy, interest, and CS identity, collected in a pre- post- survey. We found that practical measures can validly measure student experiences.


Combating Financial Crimes With Unsupervised Learning Techniques: Clustering And Dimensionality Reduction For Anti-Money Laundering, Ahmed N. Bakry, Almohammady S. Alsharkawy, Mohamed S. Farag, Kamal R. Raslan 2024 Faculty of Science Al-Azhar University Cairo, Egypt

Combating Financial Crimes With Unsupervised Learning Techniques: Clustering And Dimensionality Reduction For Anti-Money Laundering, Ahmed N. Bakry, Almohammady S. Alsharkawy, Mohamed S. Farag, Kamal R. Raslan

Al-Azhar Bulletin of Science

Anti-Money Laundering (AML) is a crucial task in ensuring the integrity of financial systems. One keychallenge in AML is identifying high-risk groups based on their behavior. Unsupervised learning, particularly clustering, is a promising solution for this task. However, the use of hundreds of features todescribe behavior results in a highdimensional dataset that negatively impacts clustering performance.In this paper, we investigate the effectiveness of combining clustering method agglomerative hierarchicalclustering with four dimensionality reduction techniques -Independent Component Analysis (ICA), andKernel Principal Component Analysis (KPCA), Singular Value Decomposition (SVD), Locality Preserving Projections (LPP)- to overcome the issue of high-dimensionality in AML data and …


Graph Neural Network Guided By Feature Selection And Centrality Measures For Node Classification On Homophilic And Heterophily Graphs, Asmaa M. Mahmoud, Heba F. Eid, Abeer S. Desuky, Hoda A. Ali 2024 Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt.

Graph Neural Network Guided By Feature Selection And Centrality Measures For Node Classification On Homophilic And Heterophily Graphs, Asmaa M. Mahmoud, Heba F. Eid, Abeer S. Desuky, Hoda A. Ali

Al-Azhar Bulletin of Science

One of the most recent developments in the fields of deep learning and machine learning is Graph Neural Networks (GNNs). GNNs core task is the feature aggregation stage, which is carried out over the node's neighbours without taking into account whether the features are relevant or not. Additionally, the majority of these existing node representation techniques only consider the network's topology structure while completely ignoring the centrality information. In this paper, a new technique for explaining graph features depending on four different feature selection approaches and centrality measures in order to identify the important nodes and relevant node features is …


Multi-Aspect Rule-Based Ai: Methods, Taxonomy, Challenges And Directions Towards Automation, Intelligence And Transparent Cybersecurity Modeling For Critical Infrastructures, Iqbal H. Sarker, Helge Janicke, Mohamed A. Ferrag, Alsharif Abuadbba 2024 Edith Cowan University

Multi-Aspect Rule-Based Ai: Methods, Taxonomy, Challenges And Directions Towards Automation, Intelligence And Transparent Cybersecurity Modeling For Critical Infrastructures, Iqbal H. Sarker, Helge Janicke, Mohamed A. Ferrag, Alsharif Abuadbba

Research outputs 2022 to 2026

Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets, and services that are vital for the functioning and well-being of a society, economy, or nation. However, the rapid proliferation and dynamism of today's cyber threats in digital environments may disrupt CI functionalities, which would have a debilitating impact on public safety, economic stability, and national security. This has led to much interest in effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-based modeling is potentially significant. In this paper, we take into account “Rule-based AI” rather than other black-box solutions since model transparency, i.e., human …


Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer 2024 Olivet Nazarene University

Preprocessing Of Astronomical Images From The Neowise Survey For Near-Earth Asteroid Detection With Machine Learning, Rachel Meyer

ELAIA

Asteroid detection is a common field in astronomy for planetary defense, requiring observations from survey telescopes to detect and classify different objects. The amount of data collected each night is continually increasing as new and better-designed telescopes begin collecting information each year. This amount of data is quickly becoming unmanageable, and researchers are looking for ways to better process this data. The most feasible current solution is to implement computer algorithms to automatically detect these sources and then use machine learning to create a more efficient and accurate method of classification. Implementation of such methods has previously focused on larger …


Reclaiming The Symbol: Ethics, Rhetoric, And The Humanistic Integration Of Gai - A Burkean Perspective, Daniel Plate, James Hutson 2024 Lindenwood University

Reclaiming The Symbol: Ethics, Rhetoric, And The Humanistic Integration Of Gai - A Burkean Perspective, Daniel Plate, James Hutson

Faculty Scholarship

This study delves into the intersection of generative artificial intelligence (GAI) and the Humanities, guided by the critical insights of Kenneth Burke, a seminal figure in the study of rhetoric and a vocal critic of scientism and positivism. The skepticism of the American literary theorist towards an uncritical embrace of science and technology, and his concerns over the inclination of the Humanities to adopt scientific methodologies at the expense of traditional forms of inquiry, provide a critical framework for examining the new role played by GAI within the Humanities. By framing these tools in the context of Burkean rhetorical theory, …


Wang Tilings In Arbitrary Dimensions, Ian Tassin 2024 Oregon State University

Wang Tilings In Arbitrary Dimensions, Ian Tassin

Rose-Hulman Undergraduate Mathematics Journal

This paper makes a new observation about arbitrary dimensional Wang Tilings,
demonstrating that any d -dimensional tile set that can tile periodically along d − 1 axes must be able to tile periodically along all axes.
This work also summarizes work on Wang Tiles up to the present day, including
definitions for various aspects of Wang Tilings such as periodicity and the validity of a tiling. Additionally, we extend the familiar 2D definitions for Wang Tiles and associated properties into arbitrary dimensional spaces. While there has been previous discussion of arbitrary dimensional Wang Tiles in other works, it has been …


Exploring The Design Of Low-End Technology To Increase Patient Connectivity To Electronic Health Records, Rens Kievit, Abdullahi Abubakar Kawu, Mirjam van Reisen, Dympna O'Sullivan, Lucy Hederman 2024 Leiden University

Exploring The Design Of Low-End Technology To Increase Patient Connectivity To Electronic Health Records, Rens Kievit, Abdullahi Abubakar Kawu, Mirjam Van Reisen, Dympna O'Sullivan, Lucy Hederman

Conference papers

The tracking of the vitals of patients with long term health problems is essential for clinicians to determine proper care. Using Patient Generated Health Data (PGHD) communicated remotely allows patients to be monitored without requiring frequent hospital visits. Issues might arise when the communication of data digitally is difficult or impossible due to a lack of access to internet or a low level of digital literacy as is the case in many African countries. The VODAN-Africa project (van Reisen et al., 2021) started in 2020 and has greatly increased the capabilities of clinics in different countries in both Africa and …


Transiam: Aggregating Multi-Modal Visual Features With Locality For Medical Image Segmentation, Xuejian LI, Shiqiang MA, Junhai XU, Jijun TANG, Shengfeng HE, Fei GUO 2024 Central South University

Transiam: Aggregating Multi-Modal Visual Features With Locality For Medical Image Segmentation, Xuejian Li, Shiqiang Ma, Junhai Xu, Jijun Tang, Shengfeng He, Fei Guo

Research Collection School Of Computing and Information Systems

Automatic segmentation of medical images plays an important role in the diagnosis of diseases. On single-modal data, convolutional neural networks have demonstrated satisfactory performance. However, multi-modal data encompasses a greater amount of information rather than single-modal data. Multi-modal data can be effectively used to improve the segmentation accuracy of regions of interest by analyzing both spatial and temporal information. In this study, we propose a dual-path segmentation model for multi-modal medical images, named TranSiam. Taking into account that there is a significant diversity between the different modalities, TranSiam employs two parallel CNNs to extract the features which are specific to …


Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen YUAN, Heyan HUANG, Yixin CAO, Qianwen CAO 2024 Singapore Management University

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. YU, Nabila Y. SALSABILA, Shih-W LIN, Aldy GUNAWAN 2024 Singapore Management University

Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. Yu, Nabila Y. Salsabila, Shih-W Lin, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SARL) algorithm is developed. The proposed SARL incorporates the core concepts …


Stopguess: A Framework For Public-Key Authenticated Encryption With Keyword Search, Tao XIANG, Zhongming WANG, Biwen CHEN, Xiaoguo LI, Peng WANG, Fei CHEN 2024 Singapore Management University

Stopguess: A Framework For Public-Key Authenticated Encryption With Keyword Search, Tao Xiang, Zhongming Wang, Biwen Chen, Xiaoguo Li, Peng Wang, Fei Chen

Research Collection School Of Computing and Information Systems

Public key encryption with keyword search (PEKS) allows users to search on encrypted data without leaking the keyword information from the ciphertexts. But it does not preserve keyword privacy within the trapdoors, because an adversary (e.g., untrusted server) might launch inside keyword-guessing attacks (IKGA) to guess keywords from the trapdoors. In recent years, public key authenticated encryption with keyword search (PAEKS) has become a promising primitive to counter the IKGA. However, existing PAEKS schemes focus on the concrete construction of PAEKS, making them unable to support modular construction, intuitive proof, or flexible extension. In this paper, our proposal called “StopGuess” …


Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan 2024 Missouri University of Science and Technology

Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

A novel optimal trajectory tracking scheme is introduced for nonlinear continuous-time systems in strict feedback form with uncertain dynamics by using neural networks (NNs). The method employs an actor-critic-based NN back-stepping technique for minimizing a discounted value function along with an identifier to approximate unknown system dynamics that are expressed in augmented form. Novel online weight update laws for the actor and critic NNs are derived by using both the NN identifier and Hamilton-Jacobi-Bellman residual error. A new continual lifelong learning technique utilizing the Fisher Information Matrix via Hamilton-Jacobi-Bellman residual error is introduced to obtain the significance of weights in …


Sigmadiff: Semantics-Aware Deep Graph Matching For Pseudocode Diffing, Lian GAO, Yu QU, Sheng YU, Yue DUAN, Heng YIN 2024 Singapore Management University

Sigmadiff: Semantics-Aware Deep Graph Matching For Pseudocode Diffing, Lian Gao, Yu Qu, Sheng Yu, Yue Duan, Heng Yin

Research Collection School Of Computing and Information Systems

Pseudocode diffing precisely locates similar parts and captures differences between the decompiled pseudocode of two given binaries. It is particularly useful in many security scenarios such as code plagiarism detection, lineage analysis, patch, vulnerability analysis, etc. However, existing pseudocode diffing and binary diffing tools suffer from low accuracy and poor scalability, since they either rely on manually-designed heuristics (e.g., Diaphora) or heavy computations like matrix factorization (e.g., DeepBinDiff). To address the limitations, in this paper, we propose a semantics-aware, deep neural network-based model called SIGMADIFF. SIGMADIFF first constructs IR (Intermediate Representation) level interprocedural program dependency graphs (IPDGs). Then it uses …


Future-Proofing The Past: Artificial Intelligence In The Restoration Of Andalusian Architectural Heritage: A Case Study Of The Alhambra Palace, Granada, Spain, Kholoud Bader Hasan Ghaith 2024 Lindenwood University

Future-Proofing The Past: Artificial Intelligence In The Restoration Of Andalusian Architectural Heritage: A Case Study Of The Alhambra Palace, Granada, Spain, Kholoud Bader Hasan Ghaith

Theses

This thesis explains the contribution of artificial intelligence in heritage restoration as an icon of Andalusian architecture by using the Alhambra as an example. The task of sustaining heritage is increasing dramatically due to the accumulation of heritage assets and the need for modern and innovative operations to cope with preservation tasks. Therefore, this thesis reviews the role of artificial intelligence in improving the restoration operation to improve accuracy and efficiency. I applied the case study as a scientific methodology to explain this work to overcome scientific and subjective obstacles, such as scarce data and software integration while explaining the …


Digital Commons powered by bepress