Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

52,825 Full-Text Articles 68,019 Authors 20,935,862 Downloads 370 Institutions

All Articles in Computer Sciences

Faceted Search

52,825 full-text articles. Page 1 of 1905.

Transiam: Aggregating Multi-Modal Visual Features With Locality For Medical Image Segmentation, Xuejian LI, Shiqiang MA, Junhai XU, Jijun TANG, Shengfeng HE, Fei GUO 2024 Central South University

Transiam: Aggregating Multi-Modal Visual Features With Locality For Medical Image Segmentation, Xuejian Li, Shiqiang Ma, Junhai Xu, Jijun Tang, Shengfeng He, Fei Guo

Research Collection School Of Computing and Information Systems

Automatic segmentation of medical images plays an important role in the diagnosis of diseases. On single-modal data, convolutional neural networks have demonstrated satisfactory performance. However, multi-modal data encompasses a greater amount of information rather than single-modal data. Multi-modal data can be effectively used to improve the segmentation accuracy of regions of interest by analyzing both spatial and temporal information. In this study, we propose a dual-path segmentation model for multi-modal medical images, named TranSiam. Taking into account that there is a significant diversity between the different modalities, TranSiam employs two parallel CNNs to extract the features which are specific to …


Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. YU, Nabila Y. SALSABILA, Shih-W LIN, Aldy GUNAWAN 2024 Singapore Management University

Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. Yu, Nabila Y. Salsabila, Shih-W Lin, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SARL) algorithm is developed. The proposed SARL incorporates the core concepts …


Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon LOPES, Rodrigo ALVES, Antoine LEDENT, Rodrygo L. T. SANTOS, Marius KLOFT 2024 Singapore Management University

Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft

Research Collection School Of Computing and Information Systems

Relevance-based ranking is a popular ingredient in recommenders, but it frequently struggles to meet fairness criteria because social and cultural norms may favor some item groups over others. For instance, some items might receive lower ratings due to some sort of bias (e.g. gender bias). A fair ranking should balance the exposure of items from advantaged and disadvantaged groups. To this end, we propose a novel post-processing framework to produce fair, exposure-aware recommendations. Our approach is based on an integer linear programming model maximizing the expected utility while satisfying a minimum exposure constraint. The model has fewer variables than previous …


Dilf: Differentiable Rendering-Based Multi-View Image-Language Fusion For Zero-Shot 3d Shape Understanding, Xin Ning, Zaiyang Yu, Lusi Li, Weijun Li, Prayag Tiwari 2024 Chinese Academy of Sciences

Dilf: Differentiable Rendering-Based Multi-View Image-Language Fusion For Zero-Shot 3d Shape Understanding, Xin Ning, Zaiyang Yu, Lusi Li, Weijun Li, Prayag Tiwari

Computer Science Faculty Publications

Zero-shot 3D shape understanding aims to recognize “unseen” 3D categories that are not present in training data. Recently, Contrastive Language–Image Pre-training (CLIP) has shown promising open-world performance in zero-shot 3D shape understanding tasks by information fusion among language and 3D modality. It first renders 3D objects into multiple 2D image views and then learns to understand the semantic relationships between the textual descriptions and images, enabling the model to generalize to new and unseen categories. However, existing studies in zero-shot 3D shape understanding rely on predefined rendering parameters, resulting in repetitive, redundant, and low-quality views. This limitation hinders the model’s …


Big Code Search: A Bibliography, Kisub KIM, Sankalp GHATPANDE, Dongsun KIM, Xin ZHOU, Kui LIU, Tegawende F. BISSYANDE, Jacques KLEIN, Traon Yves LE 2024 Singapore Management University

Big Code Search: A Bibliography, Kisub Kim, Sankalp Ghatpande, Dongsun Kim, Xin Zhou, Kui Liu, Tegawende F. Bissyande, Jacques Klein, Traon Yves Le

Research Collection School Of Computing and Information Systems

Code search is an essential task in software development. Developers often search the internet and other code databases for necessary source code snippets to ease the development efforts. Code search techniques also help learn programming as novice programmers or students can quickly retrieve (hopefully good) examples already used in actual software projects. Given the recurrence of the code search activity in software development, there is an increasing interest in the research community. To improve the code search experience, the research community suggests many code search tools and techniques. These tools and techniques leverage several different ideas and claim a better …


Μakka: Mutation Testing For Actor Concurrency In Akka Using Real-World Bugs, Mohsen Moradi Moghadam, Mehdi Bagherzadeh, Raffi Takvor Khatchadourian Ph,D,, Hamid Bagheri 2023 Oakland University

Μakka: Mutation Testing For Actor Concurrency In Akka Using Real-World Bugs, Mohsen Moradi Moghadam, Mehdi Bagherzadeh, Raffi Takvor Khatchadourian Ph,D,, Hamid Bagheri

Publications and Research

Actor concurrency is becoming increasingly important in the real-world and mission-critical software. This requires these applications to be free from actor bugs, that occur in the real world, and have tests that are effective in finding these bugs. Mutation testing is a well-established technique that transforms an application to induce its likely bugs and evaluate the effectiveness of its tests in finding these bugs. Mutation testing is available for a broad spectrum of applications and their bugs, ranging from web to mobile to machine learning, and is used at scale in companies like Google and Facebook. However, there still is …


Perception Of Bias In Chatgpt: Analysis Of Social Media Data, Abdullah Wahbeh, Mohammad A. Al-Ramahi, Omar El-Gayar, Ahmed El Noshokaty, Tareq Nasralah 2023 Slippery Rock University of Pennsylvania

Perception Of Bias In Chatgpt: Analysis Of Social Media Data, Abdullah Wahbeh, Mohammad A. Al-Ramahi, Omar El-Gayar, Ahmed El Noshokaty, Tareq Nasralah

Computer Information Systems Faculty Publications

In this study, we aim to analyze the public perception of Twitter users with respect to the use of ChatGPT and the potential bias in its responses. Sentiment and emotion analysis were also analyzed. Analysis of 5,962 English tweets showed that Twitter users were concerned about six main types of biases, namely: political, ideological, data & algorithmic, gender, racial, cultural, and confirmation biases. Sentiment analysis showed that most of the users reflected a neutral sentiment, followed by negative and positive sentiment. Emotion analysis mainly reflected anger, disgust, and sadness with respect to bias concerns with ChatGPT use.


Evaluating Digital Creativity Support For Children: A Systematic Literature Review, Marte Hoff Hagen, Daniela Soares Cruzes, Letizia Jaccheri, Jerry Alan Fails 2023 Norwegian University of Science and Technology

Evaluating Digital Creativity Support For Children: A Systematic Literature Review, Marte Hoff Hagen, Daniela Soares Cruzes, Letizia Jaccheri, Jerry Alan Fails

Computer Science Faculty Publications and Presentations

Creativity, the process of creating something new and valuable, benefits children by improving their skills and development, encouraging interaction and engagement, and enabling the generation and expression of novel ideas. In recent years, interactive digital tools have emerged to support the user’s creativity in the open-ended creation of new artifacts. However, the question of evaluating the creativity happening in the interplay between children, digital tools, and products is still open. This systematic literature review investigated the evaluations of digital creativity support tools for children and identified 81 peer-reviewed relevant articles from the last 10 years. This research contributes to practitioners …


Enhanced Content-Based Fake News Detection Methods With Context-Labeled News Sources, Duncan Arnfield 2023 East Tennessee State University

Enhanced Content-Based Fake News Detection Methods With Context-Labeled News Sources, Duncan Arnfield

Electronic Theses and Dissertations

This work examined the relative effectiveness of multilayer perceptron, random forest, and multinomial naïve Bayes classifiers, trained using bag of words and term frequency-inverse dense frequency transformations of documents in the Fake News Corpus and Fake and Real News Dataset. The goal of this work was to help meet the formidable challenges posed by proliferation of fake news to society, including the erosion of public trust, disruption of social harmony, and endangerment of lives. This training included the use of context-categorized fake news in an effort to enhance the tools’ effectiveness. It was found that term frequency-inverse dense frequency provided …


Predicting New Crescent Moon Visibility Applying Machine Learning Algorithms, Murad Al-Rajab, Samia Loucif, Yazan Al Risheh 2023 Abu Dhabi University

Predicting New Crescent Moon Visibility Applying Machine Learning Algorithms, Murad Al-Rajab, Samia Loucif, Yazan Al Risheh

All Works

The world's population is projected to grow 32% in the coming years, and the number of Muslims is expected to grow by 70%—from 1.8 billion in 2015 to about 3 billion in 2060. Hijri is the Islamic calendar, also known as the lunar Hijri calendar, which consists of 12 lunar months, and it is tied to the Moon phases where a new crescent Moon marks the beginning of each month. Muslims use the Hijri calendar to determine important dates and religious events such as Ramadan, Haj, Muharram, etc. Till today, there is no consensus on deciding on the beginning of …


Durability Of Wireless Charging Systems Embedded Into Concrete Pavements For Electric Vehicles, Pravin Poudel 2023 Utah State University

Durability Of Wireless Charging Systems Embedded Into Concrete Pavements For Electric Vehicles, Pravin Poudel

All Graduate Theses and Dissertations, Fall 2023 to Present

Point clouds are widely used in various applications such as 3D modeling, geospatial analysis, robotics, and more. One of the key advantages of 3D point cloud data is that, unlike other data formats like texture, it is independent of viewing angle, surface type, and parameterization. Since each point in the point cloud is independent of the other, it makes it the most suitable source of data for tasks like object recognition, scene segmentation, and reconstruction. Point clouds are complex and verbose due to the numerous attributes they contain, many of which may not be always necessary for rendering, making retrieving …


Collaborative Task Completion For Simulated Hexapod Robots Using Reinforcement Learning, Tayler Don Baker 2023 Utah State University

Collaborative Task Completion For Simulated Hexapod Robots Using Reinforcement Learning, Tayler Don Baker

All Graduate Theses and Dissertations, Fall 2023 to Present

There is growing interest in developing autonomous systems capable of exhibiting collaborative behaviors. Using methods such as reinforcement learning is another way to train multiple robots for collaborative task completion. This study was able to successfully in simulation train multiple hexapod robots to push a target to a designated goal collaboratively. This required each robot to learn how find the target and push that target to a goal. This work suggests that using reinforcement learning for collaborative task completion for hexapod robots may simplify the complexity of the software and improve the decisions that they make.


Software Jimenae Allows Efficient Dynamic Simulations Of Boolean Networks, Centrality And System State Analysis, Martin Kaltdorf, Tim Breitenbach, Stefan Karl, Maximilian Fuchs, David Komla Kessie, Eric Psota, Martina Prelog, Edita Sarukhanyan, Regina Ebert, Franz Jakob, Gudrun Dandekar, Muhammad Naseem, Chunguang Liang, Thomas Dandekar 2023 Biozentrum der Universität Würzburg

Software Jimenae Allows Efficient Dynamic Simulations Of Boolean Networks, Centrality And System State Analysis, Martin Kaltdorf, Tim Breitenbach, Stefan Karl, Maximilian Fuchs, David Komla Kessie, Eric Psota, Martina Prelog, Edita Sarukhanyan, Regina Ebert, Franz Jakob, Gudrun Dandekar, Muhammad Naseem, Chunguang Liang, Thomas Dandekar

All Works

The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity …


Learning Heterogeneous Subgraph Representations For Team Discovery, Radin Hamidi Rad, Hoang Nguyen, Feras Al-Obeidat, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, Jaroslaw Szlichta, Fattane Zarrinkalam 2023 Toronto Metropolitan University

Learning Heterogeneous Subgraph Representations For Team Discovery, Radin Hamidi Rad, Hoang Nguyen, Feras Al-Obeidat, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, Jaroslaw Szlichta, Fattane Zarrinkalam

All Works

The team discovery task is concerned with finding a group of experts from a collaboration network who would collectively cover a desirable set of skills. Most prior work for team discovery either adopt graph-based or neural mapping approaches. Graph-based approaches are computationally intractable often leading to sub-optimal team selection. Neural mapping approaches have better performance, however, are still limited as they learn individual representations for skills and experts and are often prone to overfitting given the sparsity of collaboration networks. Thus, we define the team discovery task as one of learning subgraph representations from a heterogeneous collaboration network where the …


Customer Churn Prediction Using Composite Deep Learning Technique, Asad Khattak, Zartashia Mehak, Hussain Ahmad, Muhammad Usama Asghar, Muhammad Zubair Asghar, Aurangzeb Khan 2023 Zayed University

Customer Churn Prediction Using Composite Deep Learning Technique, Asad Khattak, Zartashia Mehak, Hussain Ahmad, Muhammad Usama Asghar, Muhammad Zubair Asghar, Aurangzeb Khan

All Works

Customer churn, a phenomenon that causes large financial losses when customers leave a business, makes it difficult for modern organizations to retain customers. When dissatisfied customers find their present company's services inadequate, they frequently migrate to another service provider. Machine learning and deep learning (ML/DL) approaches have already been used to successfully identify customer churn. In some circumstances, however, ML/DL-based algorithms lacks in delivering promising results for detecting client churn. Previous research on estimating customer churn revealed unexpected forecasts when utilizing machine learning classifiers and traditional feature encoding methodologies. Deep neural networks were also used in these efforts to extract …


Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel 2023 University of South Alabama

Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel

Theses and Dissertations

The increasing complexity of artificial intelligence models has given rise to extensive work toward understanding the inner workings of neural networks. Much of that work, however, has focused on manipulating input data feeding the network to assess their affects on network output or pruning model components after the often-extensive time-consuming training. It is postulated in this study that understanding of neural network can benefit from model structure simplification. In turn, it is shown that model simplification can benefit from investigating network node, the most fundamental unit of neural networks, evolving trends during training. Whereas studies on simplification of model structure …


Role Of Authentication Factors In Fin-Tech Mobile Transaction Security, Habib Ullah Khan, Muhammad Sohail, Shah Nazir, Tariq Hussain, Babar Shah, Farman Ali 2023 College of Business and Economics

Role Of Authentication Factors In Fin-Tech Mobile Transaction Security, Habib Ullah Khan, Muhammad Sohail, Shah Nazir, Tariq Hussain, Babar Shah, Farman Ali

All Works

Fin-Tech is the merging of finance and technology, to be considered a key term for technology-based financial operations and money transactions as far as Fin-Tech is concerned. In the massive field of business, mobile money transaction security is a great challenge for researchers. The user authentication schemes restrict the ability to enforce the authentication before the account can access and operate. Although authentication factors provide greater security than a simple static password, financial transactions have potential drawbacks because cybercrime expands the opportunities for fraudsters. The most common enterprise challenge is mobile-based user authentication during transactions, which addresses the security issues …


Boosting The Item-Based Collaborative Filtering Model With Novel Similarity Measures, Hassan I. Abdalla, Ali A. Amer, Yasmeen A. Amer, Loc Nguyen, Basheer Al-Maqaleh 2023 Zayed University

Boosting The Item-Based Collaborative Filtering Model With Novel Similarity Measures, Hassan I. Abdalla, Ali A. Amer, Yasmeen A. Amer, Loc Nguyen, Basheer Al-Maqaleh

All Works

Collaborative filtering (CF), one of the most widely employed methodologies for recommender systems, has drawn undeniable attention due to its effectiveness and simplicity. Nevertheless, a few papers have been published on the CF-based item-based model using similarity measures than the user-based model due to the model's complexity and the time required to build it. Additionally, the substantial shortcomings in the user-based measurements when the item-based model is taken into account motivated us to create stronger models in this work. Not to mention that the common trickiest challenge is dealing with the cold-start problem, in which users' history of item-buying behavior …


Vertical Free-Swinging Photovoltaic Racking Energy Modeling: A Novel Approach To Agrivoltaics, Koami Soulemane Hayibo, Joshua M. Pearce 2023 Western University

Vertical Free-Swinging Photovoltaic Racking Energy Modeling: A Novel Approach To Agrivoltaics, Koami Soulemane Hayibo, Joshua M. Pearce

Electrical and Computer Engineering Publications

To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have varying tilt angles depending on the wind speed and direction. No energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a …


On The Effect Of Emotion Identification From Limited Translated Text Samples Using Computational Intelligence, Madiha Tahir, Zahid Halim, Muhmmad Waqas, Shanshan Tu 2023 Edith Cowan University

On The Effect Of Emotion Identification From Limited Translated Text Samples Using Computational Intelligence, Madiha Tahir, Zahid Halim, Muhmmad Waqas, Shanshan Tu

Research outputs 2022 to 2026

Emotion identification from text data has recently gained focus of the research community. This has multiple utilities in an assortment of domains. Many times, the original text is written in a different language and the end-user translates it to her native language using online utilities. Therefore, this paper presents a framework to detect emotions on translated text data in four different languages. The source language is English, whereas the four target languages include Chinese, French, German, and Spanish. Computational intelligence (CI) techniques are applied to extract features, dimensionality reduction, and classification of data into five basic classes of emotions. Results …


Digital Commons powered by bepress