Open Access. Powered by Scholars. Published by Universities.®

Other Computer Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

1,843 Full-Text Articles 2,673 Authors 1,393,215 Downloads 171 Institutions

All Articles in Other Computer Sciences

Faceted Search

1,843 full-text articles. Page 1 of 84.

Remote Side-Channel Disassembly On Field-Programmable Gate Arrays, Brandon R. Baggett 2023 University of South Alabama

Remote Side-Channel Disassembly On Field-Programmable Gate Arrays, Brandon R. Baggett

Theses and Dissertations

Over the last two decades, side-channel vulnerabilities have shown to be a major threat to embedded devices. Most side-channel research has developed our understanding of the vulnerabilities to cryptographic devices due to their implementation and how we can protect them. However, side-channel leakage can yield useful information about many other processes that run on the device. One promising area that has received little attention is the side-channel leakage due to the execution of assembly instructions. There has been some work in this area that has demonstrated the idea’s potential, but so far, this research has assumed the adversary has physical …


Enhanced Content-Based Fake News Detection Methods With Context-Labeled News Sources, Duncan Arnfield 2023 East Tennessee State University

Enhanced Content-Based Fake News Detection Methods With Context-Labeled News Sources, Duncan Arnfield

Electronic Theses and Dissertations

This work examined the relative effectiveness of multilayer perceptron, random forest, and multinomial naïve Bayes classifiers, trained using bag of words and term frequency-inverse dense frequency transformations of documents in the Fake News Corpus and Fake and Real News Dataset. The goal of this work was to help meet the formidable challenges posed by proliferation of fake news to society, including the erosion of public trust, disruption of social harmony, and endangerment of lives. This training included the use of context-categorized fake news in an effort to enhance the tools’ effectiveness. It was found that term frequency-inverse dense frequency provided …


Hypothyroid Disease Analysis By Using Machine Learning, SANJANA SEELAM 2023 California State University, San Bernardino

Hypothyroid Disease Analysis By Using Machine Learning, Sanjana Seelam

Electronic Theses, Projects, and Dissertations

Thyroid illness frequently manifests as hypothyroidism. It is evident that people with hypothyroidism are primarily female. Because the majority of people are unaware of the illness, it is quickly becoming more serious. It is crucial to catch it early on so that medical professionals can treat it more effectively and prevent it from getting worse. Machine learning illness prediction is a challenging task. Disease prediction is aided greatly by machine learning. Once more, unique feature selection strategies have made the process of disease assumption and prediction easier. To properly monitor and cure this illness, accurate detection is essential. In order …


Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel 2023 University of South Alabama

Explainable Artificial Intelligence: Approaching It From The Lowest Level, Ralf P. Riedel

Theses and Dissertations

The increasing complexity of artificial intelligence models has given rise to extensive work toward understanding the inner workings of neural networks. Much of that work, however, has focused on manipulating input data feeding the network to assess their affects on network output or pruning model components after the often-extensive time-consuming training. It is postulated in this study that understanding of neural network can benefit from model structure simplification. In turn, it is shown that model simplification can benefit from investigating network node, the most fundamental unit of neural networks, evolving trends during training. Whereas studies on simplification of model structure …


Review Classification Using Natural Language Processing And Deep Learning, Brian Nazareth 2023 California State University – San Bernardino

Review Classification Using Natural Language Processing And Deep Learning, Brian Nazareth

Electronic Theses, Projects, and Dissertations

Sentiment Analysis is an ongoing research in the field of Natural Language Processing (NLP). In this project, I will evaluate my testing against an Amazon Reviews Dataset, which contains more than 100 thousand reviews from customers. This project classifies the reviews using three methods – using a sentiment score by comparing the words of the reviews based on every positive and negative word that appears in the text with the Opinion Lexicon dataset, by considering the text’s variating sentiment polarity scores with a Python library called TextBlob, and with the help of neural network training. I have created a neural …


Closing The Gap: Leveraging Aes-Ni To Balance Adversarial Advantage And Honest User Performance In Argon2i, Nicholas Harrell, Nathaniel Krakauer 2023 Purdue University

Closing The Gap: Leveraging Aes-Ni To Balance Adversarial Advantage And Honest User Performance In Argon2i, Nicholas Harrell, Nathaniel Krakauer

CERIAS Technical Reports

The challenge of providing data privacy and integrity while maintaining efficient performance for honest users is a persistent concern in cryptography. Attackers exploit advances in parallel hardware and custom circuit hardware to gain an advantage over regular users. One such method is the use of Application-Specific Integrated Circuits (ASICs) to optimize key derivation function (KDF) algorithms, giving adversaries a significant advantage in password guessing and recovery attacks. Other examples include using graphical processing units (GPUs) and field programmable gate arrays (FPGAs). We propose a focused approach to close the gap between adversarial advantage and honest user performance by leveraging the …


Local Model Agnostic Xai Methodologies Applied To Breast Cancer Malignancy Predictions, Heather Hartley 2023 Western University

Local Model Agnostic Xai Methodologies Applied To Breast Cancer Malignancy Predictions, Heather Hartley

Electronic Thesis and Dissertation Repository

This thesis examines current state-of-the-art Explainable Artificial Intelligence (XAI) methodologies applicable to breast cancer diagnostics, as well as local model-agnostic XAI methodologies more broadly. It is well known that AI is underutilized in healthcare due to the fact that black box AI methods are largely uninterpretable. The potential for AI to positively affect health care outcomes is massive, and AI adoption by medical practitioners and the community at large will translate to more desirable patient outcomes. The development of XAI is crucial to furthering the integration of AI within healthcare, as it will allow medical practitioners and regulatory bodies to …


Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian 2023 University of Minnesota - Twin Cities

Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian

I-GUIDE Forum

Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or …


Diversification And Fairness In Top-K Ranking Algorithms, Mahsa Asadi 2023 New Jersey Institute of Technology

Diversification And Fairness In Top-K Ranking Algorithms, Mahsa Asadi

Dissertations

Given a user query, the typical user interfaces, such as search engines and recommender systems, only allow a small number of results to be returned to the user. Hence, figuring out what would be the top-k results is an important task in information retrieval, as it helps to ensure that the most relevant results are presented to the user. There exists an extensive body of research that studies how to score the records and return top-k to the user. Moreover, there exists an extensive set of criteria that researchers identify to present the user with top-k results, and result diversification …


Integrating Traditional Cs Class Activities With Computing For Social Good, Ethics, And Communications And Leadership Skills, Freelance Researcher, Devender Goyal, Luiz Fernando Capretz 2023 Raytheon

Integrating Traditional Cs Class Activities With Computing For Social Good, Ethics, And Communications And Leadership Skills, Freelance Researcher, Devender Goyal, Luiz Fernando Capretz

Electrical and Computer Engineering Publications

Software and information technologies are becoming increasingly integrated and pervasive in human society and range from automated decision making and social media and entertainment, to running critical social and physical infrastructures like government programs, utilities, and financial institutions. As a result, there is a growing awareness of the need to develop professionals who will harness these technologies in fair and inclusive ways and use them to address global issues like health, water management, poverty, and human rights. In this regard, many academic researchers have expressed the need to complement traditional teaching of CS technical skills with computer and information ethics …


Intrusion Detection: Machine Learning Techniques For Software Defined Networks, Jacob S. Rodriguez 2023 Grand Valley State University

Intrusion Detection: Machine Learning Techniques For Software Defined Networks, Jacob S. Rodriguez

Masters Theses

In recent years, software defined networking (SDN) has gained popularity as a novel approach towards network management and architecture. Compared to traditional network architectures, this software-based approach offers greater flexibility, programmability, and automation. However, despite the advantages of this system, there still remains the possibility that it could be compromised. As we continue to explore new approaches to network management, we must also develop new ways of protecting those systems from threats. Throughout this paper, I will describe and test a network intrusion detection system (NIDS), and how it can be implemented within a software defined network. This system will …


Verifying Empirical Predictive Modeling Of Societal Vulnerability To Hazardous Events: A Monte Carlo Experimental Approach, Yi Victor Wang, Seung Hee Kim, Menas C. Kafatos 2023 Massachusetts Maritime Academy

Verifying Empirical Predictive Modeling Of Societal Vulnerability To Hazardous Events: A Monte Carlo Experimental Approach, Yi Victor Wang, Seung Hee Kim, Menas C. Kafatos

Institute for ECHO Articles and Research

With the emergence of large amounts of historical records on adverse impacts of hazardous events, empirical predictive modeling has been revived as a foundational paradigm for quantifying disaster vulnerability of societal systems. This paradigm models societal vulnerability to hazardous events as a vulnerability curve indicating an expected loss rate of a societal system with respect to a possible spectrum of intensity measure (IM) of an event. Although the empirical predictive models (EPMs) of societal vulnerability are calibrated on historical data, they should not be experimentally tested with data derived from field experiments on any societal system. Alternatively, in this paper, …


Self-Supervised Pretraining And Transfer Learning On Fmri Data With Transformers, Sean Paulsen 2023 Dartmouth College

Self-Supervised Pretraining And Transfer Learning On Fmri Data With Transformers, Sean Paulsen

Dartmouth College Ph.D Dissertations

Transfer learning is a machine learning technique founded on the idea that knowledge acquired by a model during “pretraining” on a source task can be transferred to the learning of a target task. Successful transfer learning can result in improved performance, faster convergence, and reduced demand for data. This technique is particularly desirable for the task of brain decoding in the domain of functional magnetic resonance imaging (fMRI), wherein even the most modern machine learning methods can struggle to decode labelled features of brain images. This challenge is due to the highly complex underlying signal, physical and neurological differences between …


Proposing A Measure Of Ethicality For Humans And Ai, Alejandro Jorge Napolitano Jawerbaum 2023 Duquesne University

Proposing A Measure Of Ethicality For Humans And Ai, Alejandro Jorge Napolitano Jawerbaum

Electronic Theses and Dissertations

Smarter people or intelligent machines are able to make more accurate inferences about their environment and other agents more efficiently than less intelligent agents. Formally: ‘Intelligence measures an agent’s ability to achieve goals in a wide range of environments.’ (Legg, 2008)

In this dissertation we extend this definition to include ethical behaviour and we will offer a mathematical formalism and a way to estimate how ethical an action is or will be, both for a human and for a computer, by calculating the expected values of random variables. Formally, we propose the following measure of ethicality, which is computable, or …


Understanding The Role Of Interactivity And Explanation In Adaptive Experiences, Lijie Guo 2023 Clemson University

Understanding The Role Of Interactivity And Explanation In Adaptive Experiences, Lijie Guo

All Dissertations

Adaptive experiences have been an active area of research in the past few decades, accompanied by advances in technology such as machine learning and artificial intelligence. Whether the currently ongoing research on adaptive experiences has focused on personalization algorithms, explainability, user engagement, or privacy and security, there is growing interest and resources in developing and improving these research focuses. Even though the research on adaptive experiences has been dynamic and rapidly evolving, achieving a high level of user engagement in adaptive experiences remains a challenge. %????? This dissertation aims to uncover ways to engage users in adaptive experiences by incorporating …


All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan 2023 Clemson University

All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan

All Dissertations

Extended reality, or "XR", is the adopted umbrella term that is heavily gaining traction to collectively describe Virtual reality (VR), Augmented reality (AR), and Mixed reality (MR) technologies. Together, these technologies extend the reality that we experience either by creating a fully immersive experience like in VR or by blending in the virtual and "real" worlds like in AR and MR.

The sustained success of XR in the workplace largely hinges on its ability to facilitate efficient user interactions. Similar to interacting with objects in the real world, users in XR typically interact with virtual integrants like objects, menus, windows, …


A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines., Abdulgani Kahraman 2023 University of Louisville

A Data-Driven Multi-Regime Approach For Predicting Real-Time Energy Consumption Of Industrial Machines., Abdulgani Kahraman

Electronic Theses and Dissertations

This thesis focuses on methods for improving energy consumption prediction performance in complex industrial machines. Working with real-world industrial machines brings several challenges, including data access, algorithmic bias, data privacy, and the interpretation of machine learning algorithms. To effectively manage energy consumption in the industrial sector, it is essential to develop a framework that enhances prediction performance, reduces energy costs, and mitigates air pollution in heavy industrial machine operations. This study aims to assist managers in making informed decisions and driving the transition towards green manufacturing. The energy consumption of industrial machinery is substantial, and the recent increase in CO2 …


The Effects Of Primary And Secondary Task Workloads On Cybersickness In Immersive Virtual Active Exploration Experiences, Rohith Venkatakrishnan 2023 Clemson University

The Effects Of Primary And Secondary Task Workloads On Cybersickness In Immersive Virtual Active Exploration Experiences, Rohith Venkatakrishnan

All Dissertations

Virtual reality (VR) technology promises to transform humanity. The technology enables users to explore and interact with computer-generated environments that can be simulated to approximate or deviate from reality. This creates an endless number of ways to propitiously apply the technology in our lives. It follows that large technological conglomerates are pushing for the widespread adoption of VR, financing the creation of the Metaverse - a hypothetical representation of the next iteration of the internet.

Even with VR technology's continuous growth, its widespread adoption remains long overdue. This can largely be attributed to an affliction called cybersickness, an analog to …


Epileptic Seizure Classification Using Image-Based Data Representation, Amber Surles 2023 University of South Alabama

Epileptic Seizure Classification Using Image-Based Data Representation, Amber Surles

Theses and Dissertations

Epilepsy is a recurrence of seizures caused by a disorder of the brain in over 3.4 million people nationwide. Some people are able to predict their seizures based off prodrome, which is an early sign or symptom that usually resembles mood changes or a euphoric feeling even days to an hour before occurrence. Consequently, the natural instincts of the body to react to an upcoming attack lends credence to the existence of a pre-ictal state that precedes seizure episodes. Physicians and researchers have thus sought for an automated approach for predicting or detecting seizures.

In this research, we evaluate the …


Multi-Scale Attention Networks For Pavement Defect Detection, Junde Chen, Yuxin Wen, Yaser Ahangari Nanehkaran, Defu Zhang, Adan Zeb 2023 Chapman University

Multi-Scale Attention Networks For Pavement Defect Detection, Junde Chen, Yuxin Wen, Yaser Ahangari Nanehkaran, Defu Zhang, Adan Zeb

Engineering Faculty Articles and Research

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. …


Digital Commons powered by bepress