Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

939 Full-Text Articles 2,494 Authors 202,985 Downloads 115 Institutions

All Articles in Medicinal-Pharmaceutical Chemistry

Faceted Search

939 full-text articles. Page 1 of 42.

Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg 2022 Central Washington University

Stereocontrolled Access To Δ-Lactone-Fused-Γ-Lactams Bearing Angular Benzylic Quaternary Stereocenters, Timothy K. Beng, Morgan J. Rodriguez, Claire Borg

All Faculty Scholarship for the College of the Sciences

C-fused γ-lactam-lactones are resident in several bioactive molecules, including anticancer agents such as omuralide. In this embodiment, we report mild conditions for the catalytic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids. The use of dichloromethane as the solvent and Ph3PS as the catalyst led to predominant 6-endo-trig cyclization and furnished the trans-fused-γ-lactam-δ-lactones. The transformation is modular, regioselective, chemoselective, and diastereoselective. The γ-lactam-δ-lactones bear angular quaternary benzylic stereocenters, which is noteworthy since the presence of a quaternary carbon in bioactive small molecules often promotes an element of conformational restriction that imparts potency, selectivity, and metabolic stability. The ...


Synthesis, Characterization, And Bioactivity Of 3-Substituted Coumarins As An Undergraduate Project, Karsen King, Nicholas Campbell, Ronald Okoth, Wathsala Medawala 2022 Georgia College and State University

Synthesis, Characterization, And Bioactivity Of 3-Substituted Coumarins As An Undergraduate Project, Karsen King, Nicholas Campbell, Ronald Okoth, Wathsala Medawala

Georgia Journal of Science

Coumarins are an important class of phytochemicals, a chemical defense presumed to be secreted by plants. More recently, Coumarins have gathered popularity for their basis in anti-cancer agents. This paper dives into the organic synthesis of two 3-substituted coumarins from o-vanillin using the Knoevenagel condensation reaction. The 3-substituted coumarin were characterized using melting point analysis, 1H-NMR, and UV-Vis spectroscopy. In addition, the anticancer activity of synthesized 3-substituted coumarin compounds were assayed against topoisomeraseIIα, which is the target enzyme of FDA approved anti-cancer drug etoposide since it is an active enzyme in cancer cell replication. The demonstrated procedures can be ...


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani 2022 Institute for Advanced Studies in Basic Sciences, Iran

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection ...


The Design Of A Pcr-Based Assay To Detect And Isolate The Serine Palmitolytransferase Gene From Environmental Bacteria, Lana Taylor 2022 University of Mississippi

The Design Of A Pcr-Based Assay To Detect And Isolate The Serine Palmitolytransferase Gene From Environmental Bacteria, Lana Taylor

Honors Theses

Sphingolipids are a natural class of lipids that function as structural elements of cell membranes and signaling molecules for important cellular activities such as cell growth, differentiation, apoptosis, recognition, and adhesion. These lipids can be found universally in eukaryotic cells as well as some species of bacteria, such as those found in the human gut microbiome and in the environment in soils. Though sphingolipid production is rare in bacteria, both eukaryotic and prokaryotic sphingolipid biosynthesis begin with the condensation of serine and palmitoyl CoA into 3-ketodihydrosphingosine catalyzed by the enzyme serine palmitoyltransferase (SPT). In recent years, several studies have shown ...


The Use Of Hallucinogens In The Treatment Of Mental Health Disorders, Brianna Gagen 2022 Murray State University

The Use Of Hallucinogens In The Treatment Of Mental Health Disorders, Brianna Gagen

Honors College Theses

The percent of people with mental health disorders in the United States have skyrocketed over the past decade. With stigma surrounding the discussion of mental health and the symptoms associated with it, often those that are suffering do not receive sufficient treatment, as they might with a physical illness. The current, common treatment options for common psychological disorders, like depression, anxiety, and post-traumatic stress disorder, are sometimes not effective in patients, due to resistance or poor response outcomes. Consequently, in order to research alternative therapeutic approaches for mental health disorders, scientists are researching the effects of several hallucinogenic drugs in ...


Unraveling The Molecular Foundations Behind The Diverged Behaviors Of Mouse Insulin 1 And Insulin 2, Connecting Diabetes Risk With Glucocorticoid Treatment And Chronic Migraine Through The Analysis Of Islet Chemistry, And Capturing Key Posttranslational Modifications All Through The Application Of A Novel Lc-Ims-Ms Workflow, Connor Christopher Long 2022 University of Tennessee, Knoxville

Unraveling The Molecular Foundations Behind The Diverged Behaviors Of Mouse Insulin 1 And Insulin 2, Connecting Diabetes Risk With Glucocorticoid Treatment And Chronic Migraine Through The Analysis Of Islet Chemistry, And Capturing Key Posttranslational Modifications All Through The Application Of A Novel Lc-Ims-Ms Workflow, Connor Christopher Long

Select or Award-Winning Individual Scholarship

We display the capabilities of our established liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) workflow in the investigations of islet chemistry at the sub-single-islet level. We begin by characterizing the structural differences of Ins1 and Ins2 to present novel insights as to why their behaviors diverge. We then examine the effects of the stress hormone corticosterone, the rodent equivalent of human cortisol that is often used as a therapeutic, on pancreatic peptide hormone secretion. We also uncover the molecular connection behind the inverse relationship between type 2 diabetes (T2D) risk and chronic migraine via the neuropeptides CGRP and PACAP. Lastly, we ...


An Investigation Towards The Synthesis Of A Novel Conformationally Restricted Ethylenediamine Scaffold, Fanny Mai 2022 Montclair State University

An Investigation Towards The Synthesis Of A Novel Conformationally Restricted Ethylenediamine Scaffold, Fanny Mai

Theses, Dissertations and Culminating Projects

This study reports the synthesis of a novel conformationally restricted ethylenediamine scaffold that can be explored for drug discovery. There was significant progress in synthesizing the target scaffolds, but future studies are needed to finish this synthesis. This potential ethylenediamine compound may offer new scaffolds for exploration in drug design and orexin receptor antagonists with improved selectivity for OX1R and OX2R.


Synthesis Of A Novel Ras Farnesyl Protein Transferase Inhibitor, Mark F. Mechelke, Anna Mikolchak 2022 St. Cloud State University

Synthesis Of A Novel Ras Farnesyl Protein Transferase Inhibitor, Mark F. Mechelke, Anna Mikolchak

Chemistry Faculty Publications

Mutant RAS proteins are associated with 30% of all human cancers. Unregulated cell growth caused by mutant RAS proteins can be prevented by RAS farnesyl protein transferase (FPTase) inhibitors. A novel FPTase inhibitor has been synthesized incorporating a modified farnesyl “tail” and a customized diphosphate “head”. It is anticipated that the modified “tail”, incorporating a phenyl substituent, will bind more tightly to FPTase due to nonbonding interactions between the aromatic ring and ten aromatic amino acid residues that line the enzyme active site. The altered polar “head”, designed from L-aspartic acid, has already been shown to mimic the natural substrate ...


Synthesis Of Benzophenone-O-Glycosides Under Basic Conditions, Samuel Burns 2022 University of Minnesota - Morris

Synthesis Of Benzophenone-O-Glycosides Under Basic Conditions, Samuel Burns

Undergraduate Research Symposium 2022

Type 2 diabetes is a growing health concern worldwide characterized by high blood sugar. Anti-diabetic therapy aims at correcting this sugar imbalance by inhibiting the enzyme α-glucosidase which is responsible for cleaving carbohydrates and starch into glucose. Benzophenone glycosides are a class of biomolecules with α-glucosidase inhibitory properties that have garnered some attention. It can be found and isolated from some traditional medicinal plants which was not done for this project. Once isolated, new derivatives can be synthesized by manipulating protecting groups of the starting material to get the benzophenone. The benzophenone can then undergo glycosylation with the protected sugar ...


Synthesis And Characterization Of A Novel Reaction-Based Azaborine Fluorescent Probe Capable Of Selectively Detect Carbon Monoxide Based On Palladium-Mediated Carbonylation Chemistry, Samuel Moore, Carl Jacky Saint-Louis 2022 Kennesaw State University

Synthesis And Characterization Of A Novel Reaction-Based Azaborine Fluorescent Probe Capable Of Selectively Detect Carbon Monoxide Based On Palladium-Mediated Carbonylation Chemistry, Samuel Moore, Carl Jacky Saint-Louis

Symposium of Student Scholars

Azaborines are fascinating compounds because they possess valuable properties such as photochemical stability, have high molar absorption coefficient and high fluorescent quantum yields, as well as large Stokes shifts and tunable absorption/emission spectra. Here, we designed, synthesized, and will examine a novel reaction-based azaborine fluorescent probe capable of selectively detect carbon monoxide (CO) based on palladium-mediated carbonylation chemistry. This novel azaborine fluorescent probe will exhibit high selectivity for CO and display a robust turn-on fluorescent response in the presence of CO in aqueous buffer solution.


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan 2022 Chapman University

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and ...


Peptidomics Analysis Reveals Changes In Small Urinary Peptides In Patients With Interstitial Cystitis/Bladder Pain Syndrome, Md Shadman Ridwan Abid, Haowen Qiu, Bridget A. Tripp, Aline De Lima Leite, Heidi Roth, Jiri Adamec, Robert Powers, James W. Checco 2022 University of Nebraska-Lincoln

Peptidomics Analysis Reveals Changes In Small Urinary Peptides In Patients With Interstitial Cystitis/Bladder Pain Syndrome, Md Shadman Ridwan Abid, Haowen Qiu, Bridget A. Tripp, Aline De Lima Leite, Heidi Roth, Jiri Adamec, Robert Powers, James W. Checco

UNL Student Research Days Posters, Graduate

Interstitial cystitis or bladder pain syndrome (IC/BPS) is a chronic and debilitating pain disorder of the bladder and urinary tract with poorly understood etiology. Symptomatic criteria to aid in the diagnosis of IC/BPS includes bladder pain, an increase in urinary urgency or Hunner’s ulcers on the bladder wall.

Our study revealed differences in the profiles of small urinary peptides for IC/BPS patients compared to age-matched controls which is consistent with increased protease activity in IC/BPS. Our study also enabled the direct measurement of APF peptide abundance in IC/BPS and control urine. Our results indicate ...


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen 2022 College of Saint Benedict/Saint John's University

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSBSJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has ...


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen 2022 College of Saint Benedict/Saint John's University

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSBSJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be ...


1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi 2022 Chapman University

1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi

Kevin and Tam Ross Undergraduate Research Prize

This is Mo Hijazi's submission for the 2022 Kevin and Tam Ross Undergraduate Research Prize, which won first place. It contains their essay on using library resources, their bibliography, and a summary of their research project on hollow-core nanogels.

Mo is a second-year student at Chapman University, majoring in Biological Sciences. Their faculty mentor is Dr. Molla Islam.


Application Of Gellan Gum Biopolymer In Biomedical Applications: A Review, Norsyakirah Izzati Hishamuddin, Mohd Hasmizam Razali, Khairul Anuar Mat Amin 2022 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu 21030, Malaysia

Application Of Gellan Gum Biopolymer In Biomedical Applications: A Review, Norsyakirah Izzati Hishamuddin, Mohd Hasmizam Razali, Khairul Anuar Mat Amin

Makara Journal of Science

Gellan gum (GG) has gained considerable attention in the food, chemical, and pharmaceutical industries due to its functional characteristics. It has versatile properties, such as water solubility, easy bio-fabrication, good film/hydrogel-formation, biodegradability, and biocompatibility. These properties render GG a promising material in biomedical applications, specifically in the development of wound dressing materials. In this review, the use of GG biopolymer as a wound dressing material was discussed. Various fillers, such as titanium dioxides, clay, drug, and honey, have been incorporated in GG to produce film, hydrogel, or scaffold materials. The effects of filler on the mechanical performance, physical properties ...


Oxidation Of Thiols To Disulfides Using An Environmentally “Green” Organocatalyst And New Mechanistic Insights, Kosta V. Vlasakakis, Olivia M. White, Robert P. Reynolds, Shayne M. Weierbach, Shannon M. Weaver, Ramsey T. Ritter, Nishi H. Patel, Eric C. Hayes, Sydney Dunmire, Kyle M. Lambert 2022 Old Dominion University

Oxidation Of Thiols To Disulfides Using An Environmentally “Green” Organocatalyst And New Mechanistic Insights, Kosta V. Vlasakakis, Olivia M. White, Robert P. Reynolds, Shayne M. Weierbach, Shannon M. Weaver, Ramsey T. Ritter, Nishi H. Patel, Eric C. Hayes, Sydney Dunmire, Kyle M. Lambert

Undergraduate Research Symposium

The selective oxidation of thiols to disulfides is an area of great importance in the areas of materials and medicinal chemistry research. The production of polymers, rubber, pharmaceuticals, and the folding of proteins in biological systems all rely on the formation of disulfide bonds. Herein, we introduce a stoichiometric and electrocatalytic method for the oxidation of various pharmaceutically and biologically relevant thiols into their respective disulfides in more environmentally benign solvents such as water and alcohol solvents. The scope of the transformation was evaluated and a detailed mechanistic study involving control experiments, experimental kinetic studies, and computational investigations led to ...


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker 2022 Chapman University

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural ...


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker 2022 Chapman University

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and ...


Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu 2022 Yunnan Agricultural University

Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu

Chemistry Faculty Publications

This network-based pharmacology study intends to uncover the underlying mechanisms of cannabis leading to a therapeutic benefit and the pathogenesis for a wide range of diseases claimed to benefit from or be caused by the use of the cannabis plant. Cannabis contains more than 600 chemical components. Among these components, cannabinoids are well-known to have multifarious pharmacological activities. In this work, twelve cannabinoids were selected as active compounds through text mining and drug-like properties screening and used for initial protein-target prediction. The disease-associated biological functions and pathways were enriched through GO and KEGG databases. Various biological networks [i.e., protein-protein ...


Digital Commons powered by bepress