Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

943 Full-Text Articles 2,459 Authors 206,622 Downloads 118 Institutions

All Articles in Medicinal-Pharmaceutical Chemistry

Faceted Search

943 full-text articles. Page 1 of 42.

Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian 2023 Chapman University

Virtual And In Vitro Screening Of Natural Products Identifies Indole And Benzene Derivatives As Inhibitors Of Sars-Cov-2 Main Protease (MPro), Dony Ang, Riley Kendall, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with …


Development Of An Lcms Method To Detect And Quantify Curcumin In A Novel Oral Formulation Of Turmeric, Brandon Renninger 2023 Roseman University of Health Sciences

Development Of An Lcms Method To Detect And Quantify Curcumin In A Novel Oral Formulation Of Turmeric, Brandon Renninger

Annual Research Symposium

No abstract provided.


Synthesis And Analysis Of Novel Troponoid-Based Chemical Probes, Alex Berkowitz 2023 The Graduate Center, City University of New York

Synthesis And Analysis Of Novel Troponoid-Based Chemical Probes, Alex Berkowitz

Dissertations, Theses, and Capstone Projects

Troponoids are a class of non-benzenoid aromatic species featuring a cycloheptatrienone ring and varying degrees of oxygenation. These scaffolds have proven ubiquitous amongst natural products, and have displayed promise as therapeutic agents against a variety of diseases. Herein, we will describe our efforts towards furthering troponoids as potential pharmaceuticals. In Chapter 1, we outline a kojic acid-derived oxidopyrylium cycloaddition/ring-opening method developed in our lab to generate ahydroxytropolones (aHTs). This route was successfully adapted to synthesize a small library of lipophilic aHTs that were proven to be effective against herpes simplex virus-1 (HSV-1) replication, while providing further insight into the mechanism …


The Discovery And Characterization Of Novel Potent 5-Substituted 3, 3’, 4’, 7-Tetramethoxyflavonoid Dna Triplex Specific Binding Ligands, Vanessa Marie Rangel 2023 University of the Pacific

The Discovery And Characterization Of Novel Potent 5-Substituted 3, 3’, 4’, 7-Tetramethoxyflavonoid Dna Triplex Specific Binding Ligands, Vanessa Marie Rangel

University of the Pacific Theses and Dissertations

Chemotherapy works by killing fast dividing cells. Unfortunately, these drugs are not specific to cancer tissue and can damage normal cells. Chemotherapy is like taking poison and hoping it kills the cancer cells before it kills you. As an alternative, many researchers have investigated the use of antigene therapy to selectively target cancer causing genes to avoid off target effects. Although promising, the theory is limited by the stability of the triplex structure. Here, we report the discovery of potent triplex binding ligands derived from the natural product quercetin. Chemical derivatives of 5-substituted 3, 3’, 4’, 7-tetramethoxyquercetin derivatives were characterized …


Multiomics Approach Captures Hepatic Metabolic Network Altered By Chronic Ethanol Administration, Isin Tuna Sakallioglu, Bridget Tripp, Jacy Kubik, Carol A. Casey, Paul G. Thomes, Robert Powers 2022 University of Nebraska-Lincoln

Multiomics Approach Captures Hepatic Metabolic Network Altered By Chronic Ethanol Administration, Isin Tuna Sakallioglu, Bridget Tripp, Jacy Kubik, Carol A. Casey, Paul G. Thomes, Robert Powers

Faculty Publications -- Chemistry Department

Using a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides. Similarly, the lipidomics results revealed that ethanol …


Gold (I) Tetrathiomolybdate Clusters: Synthesis, Characterization, Computational Studies, And Reactivity With Thiophenol And Selenophenol, Dhirgam Humaidy 2022 University of Maine

Gold (I) Tetrathiomolybdate Clusters: Synthesis, Characterization, Computational Studies, And Reactivity With Thiophenol And Selenophenol, Dhirgam Humaidy

Electronic Theses and Dissertations

This thesis describes the synthesis and reactivity of heterometallic complexes containing medicinally active Au(I) and tetrathiomolybdate, [MoS4]2-. The research is motivated by the idea of multifunctional drugs, which are designed to treat diseases through two or more mechanisms of action. Five clusters of the general form, [MoS4(AuL)2] were prepared: C-1 (L=IPr), C-2 (L=IBzMe), C-3 (L=IMes), C-4 (L=PPh3), and C-5 (L=PEt3). The clusters with NHC ligands, C-1, C-2, and C-3 were prepared for the first time and thoroughly characterized by 1H NMR,13C{1H} …


Uv-Light-Tunable P-/N-Type Chemiresistive Gas Sensors Based On Quasi-1d Tis3 Nanoribbons: Detection Of Isopropanol At Ppm Concentrations, Victor V. Sysoev, Andrey V. Lashkov, Alexey Lipatov, Ilya A. Plugin, Michael Bruns, Dirk Fuchs, Alexey S. Varezhnikov, Mustahsin Adib, Martin Sommer, Alexander Sinitskii 2022 Yuri Gagarin State Technical University of Saratov

Uv-Light-Tunable P-/N-Type Chemiresistive Gas Sensors Based On Quasi-1d Tis3 Nanoribbons: Detection Of Isopropanol At Ppm Concentrations, Victor V. Sysoev, Andrey V. Lashkov, Alexey Lipatov, Ilya A. Plugin, Michael Bruns, Dirk Fuchs, Alexey S. Varezhnikov, Mustahsin Adib, Martin Sommer, Alexander Sinitskii

Faculty Publications -- Chemistry Department

The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore 2022 Kennesaw State University

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Investigating The Effects Of Ionic Liquids On Dna Gquadruplex And Protein Structure Using Molecular Dynamics Simulations, Nicholas J. Paradis 2022 Rowan University

Investigating The Effects Of Ionic Liquids On Dna Gquadruplex And Protein Structure Using Molecular Dynamics Simulations, Nicholas J. Paradis

Theses and Dissertations

Nucleic acids and proteins have huge implications in biomedicine and bioengineering, however their storage instability limits their applicability and current storage protocols are expensive and globally-inaccessible. Finding an alternative biocompatible media to store nucleic acids and proteins would reduce costs and increase their applicability. Ionic liquids (ILs) are molten salt compounds that have been shown to modulate the stability and activity of nucleic acids and proteins. In this thesis, molecular modeling studies of DNA/RNA and protein structure in ILs will be discussed (Chapter 1) and this method will be used to study the IL effects on the structure on the …


Threonine Phosphorylation Of An Electrochemical Peptide-Based Sensor To Achieve Improved Uranyl Ion Binding Affinity, Channing C. Thompson, Rebecca Lai 2022 University of Nebraska-Lincoln

Threonine Phosphorylation Of An Electrochemical Peptide-Based Sensor To Achieve Improved Uranyl Ion Binding Affinity, Channing C. Thompson, Rebecca Lai

Faculty Publications -- Chemistry Department

We have successfully designed a uranyl ion (U(VI)-specific peptide and used it in the fabrication of an electrochemical sensor. The 12-amino acid peptide sequence, (n) DKDGDGYIpTAAE (c), originates from calmodulin, a Ca(II)-binding protein, and contains a phosphothreonine that enhances the sequence’s affinity for U(VI) over Ca(II). The sensing mechanism of this U(VI) sensor is similar to other electrochemical peptide-based sensors, which relies on the change in the flexibility of the peptide probe upon interacting with the target. The sensor was systematically characterized using alternating current voltammetry (ACV) and cyclic voltammetry. Its limit of detection was 50 nM, which is lower …


Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther 2022 University of Massachusetts Amherst

Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther

Doctoral Dissertations

Advancing pharmaceutical technology has made it possible to treat diseases once considered ‘undruggable.’ Access to these new pharmaceutical targets is possible thanks to the advent of protein and nucleic acid therapeutics. Responses to the COVID-19 pandemic, as well as cutting-edge treatments for cancer and multiple sclerosis have centered on these biologic therapies, promising even greater value in the future. However, their utility is limited at a cellular level by inability to cross the plasma membrane. Nanocarrier technologies encapsulate therapeutics and facilitate uptake into the cell but are often trapped and degraded in endosomes. Arginine-functionalized gold nanoparticles (Arg-NPs) provide efficient, direct …


Effects Of Cannabinoids On Ligand-Gated Ion Channels, Murat Oz, Keun-Hang Susan Yang, Mohamed Omer Mahgoub 2022 Kuwait University

Effects Of Cannabinoids On Ligand-Gated Ion Channels, Murat Oz, Keun-Hang Susan Yang, Mohamed Omer Mahgoub

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion …


Fine Tuning The Pore Surface In Zirconium Metal−Organic Frameworks For Selective Ethane/Ethylene Separation, Yuchen Hu, Yanshu Shi, Yi Xie, Rebecca Shu Hui Khoo, Christian Fiankor, Xu Zhang,, Banglin Chen, Jian Zhang 2022 University of Nebraska-Lincoln

Fine Tuning The Pore Surface In Zirconium Metal−Organic Frameworks For Selective Ethane/Ethylene Separation, Yuchen Hu, Yanshu Shi, Yi Xie, Rebecca Shu Hui Khoo, Christian Fiankor, Xu Zhang,, Banglin Chen, Jian Zhang

Faculty Publications -- Chemistry Department

Ethylene is an important chemical feedstock for production of polymers and high-value organic chemicals, and yet its conventional purification process is plagued with high consumption of energy. Metal−organic frameworks (MOFs) provide a suitable adsorption platform for selective ethane/ ethylene separation thanks to their structural diversity, tunable pore characteristics, designable pore sizes, and high pore volumes. Although there are empirical design rules like avoiding open metal sites and creating nonpolar pore surfaces for development of adsorptive MOFs, it is still challenging to design robust MOFs that can realize direct ethane-selective separation. Herein, we systematically designed and synthesized three Zr-MOFs based on …


Leveraging The Structure Of Dnaja1 To Discover Novel Potential Pancreatic Cancer Therapies, Heidi E. Roth, Aline De Lima Leite, Nicolas Y. Palermo, Robert Powers 2022 University of Nebraska-Lincoln

Leveraging The Structure Of Dnaja1 To Discover Novel Potential Pancreatic Cancer Therapies, Heidi E. Roth, Aline De Lima Leite, Nicolas Y. Palermo, Robert Powers

Faculty Publications -- Chemistry Department

Pancreatic cancer remains one of the deadliest forms of cancer with a 5-year survival rate of only 11%. Difficult diagnosis and limited treatment options are the major causes of the poor outcome for pancreatic cancer. The human protein DNAJA1 has been proposed as a potential therapeutic target for pancreatic cancer, but its cellular and biological functions remain unclear. Previous studies have suggested that DNAJA10s cellular activity may be dependent upon its protein binding partners. To further investigate this assertion, the first 107 amino acid structures of DNAJA1 were solved by NMR, which includes the classical J-domain and its associated linker …


Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan 2022 Chapman University

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we …


Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker 2022 Chapman University

Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines autoencoder-based embedding of small molecules with a cluster-based perturbation approach for efficient navigation of the latent space and a feature-based kinase inhibition likelihood classifier that guides optimization of the molecular properties and targeted molecular design. In the proposed generative approach, molecules sharing similar structures tend to cluster in the latent space, and interpolating between two molecules in the latent space …


Tetrahydrocurcumin Improves Lipopolysaccharide-Induced Myocardial Dysfunction By Inhibiting Oxidative Stress And Inflammation Via Jnk/Erk Signaling Pathway Regulation, Hanzhao Zhu, Liyun Zhang, Hao Jia, Lu Xu, Yu Cao, Mengen Zhai, Kaifeng Li, Lin Xia, Liqing Jiang, Xiang Li, Yenong Zhou, Jincheng Liu, Shiqiang Yu, Weixun Duan 2022 Sacred Heart University

Tetrahydrocurcumin Improves Lipopolysaccharide-Induced Myocardial Dysfunction By Inhibiting Oxidative Stress And Inflammation Via Jnk/Erk Signaling Pathway Regulation, Hanzhao Zhu, Liyun Zhang, Hao Jia, Lu Xu, Yu Cao, Mengen Zhai, Kaifeng Li, Lin Xia, Liqing Jiang, Xiang Li, Yenong Zhou, Jincheng Liu, Shiqiang Yu, Weixun Duan

Chemistry Student Publications

Background

Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy.

Methods

After the oral administration of THC (120 mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10 mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was …


Ai Protein Structure Prediction-Based Modeling And Mutagenesis Of A Protostome Receptor And Peptide Ligands Reveal Key Residues For Their Interaction, Shi-Qi Guo, Ya-Dong Li, Ping Chen, Guo Zhang, Hui-Ying Wang, Hui-Min Jiang, Wei-Jia Liu, Ju-Ping Xu, Xue-Ying Ding, Ping Fu, Ke Yu, Hai-Bo Zhou, James W. Checco, Jian Jing 2022 Nanjing University

Ai Protein Structure Prediction-Based Modeling And Mutagenesis Of A Protostome Receptor And Peptide Ligands Reveal Key Residues For Their Interaction, Shi-Qi Guo, Ya-Dong Li, Ping Chen, Guo Zhang, Hui-Ying Wang, Hui-Min Jiang, Wei-Jia Liu, Ju-Ping Xu, Xue-Ying Ding, Ping Fu, Ke Yu, Hai-Bo Zhou, James W. Checco, Jian Jing

Faculty Publications -- Chemistry Department

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide–receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides …


Meta-Analysis Reveals Both The Promises And The Challenges Of Clinical Metabolomics, Heidi E. Roth, Robert Powers 2022 University of Nebraska-Lincoln

Meta-Analysis Reveals Both The Promises And The Challenges Of Clinical Metabolomics, Heidi E. Roth, Robert Powers

Faculty Publications -- Chemistry Department

Clinical metabolomics is a rapidly expanding field focused on identifying molecular biomarkers to aid in the efficient diagnosis and treatment of human diseases. Variations in study design, metabolomics methodologies, and investigator protocols raise serious concerns about the accuracy and reproducibility of these potential biomarkers. The explosive growth of the field has led to the recent availability of numerous replicate clinical studies, which permits an evaluation of the consistency of biomarkers identified across multiple metabolomics projects. Pancreatic ductal adenocarcinoma (PDAC) is the third-leading cause of cancer-related death and has the lowest five-year survival rate primarily due to the lack of an …


Lc-Ms/Tof Characterization And Stability Study Of Artesunate In Different Solvent Systems, Kogila Oke, Amos Mugweru 2022 Rowan University

Lc-Ms/Tof Characterization And Stability Study Of Artesunate In Different Solvent Systems, Kogila Oke, Amos Mugweru

Faculty Scholarship for the College of Science & Mathematics

Artemisinin (ART) is a sesquiterpene lactone and a popular malaria drug used in many parts of the world. Artesunate (ARTS) is a semi-synthetic derivative of ART with improved pharmacokinetic properties. However, the half-life of ARTS is less than an hour in vivo. The analysis of this drug in vitro in different solvent systems using LC-MS/TOF showed a solvent-driven breakdown. ARTS breakdown formed several derivatives, including dihydroartemisinin (DHA), artemether (ARTM) and DHA-dimer among others, at different rates in different solvent composition systems. The change in temperature from room temperature to physiological temperature (37 °C) was found to enhance the rate of …


Digital Commons powered by bepress