Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

908 Full-Text Articles 2,379 Authors 155,978 Downloads 105 Institutions

All Articles in Medicinal-Pharmaceutical Chemistry

Faceted Search

908 full-text articles. Page 1 of 39.

Synthetic And Biological Studies On Benzazepine Derivatives As Dopamine Receptor Ligands, Rajan Giri 2021 The Graduate Center, City University of New York

Synthetic And Biological Studies On Benzazepine Derivatives As Dopamine Receptor Ligands, Rajan Giri

Dissertations, Theses, and Capstone Projects

Dopamine (DA) receptors, members of the G-protein coupled receptors (GPCRs) family, are divided in two groups based on their transmembrane structural homology domains: D1R-like (D1R, D5R sub-types) and D2R-like DA receptors (D2R, D3R and D4R sub-types). Disturbances in dopaminergic neurotransmission are associated with several CNS disorders. Hence, DA receptor selective ligands have been sought as pharmacological agents to normalize perturbations in the dopaminergic system. Despite several notable efforts, the discovery of highly selective ligands for dopamine receptor sub-types has proved challenging due to close transmembrane structural similarity, especially between DA receptor sub-types within the same group.

The 1-phenylbenzazepine scaffold is ...


Theranostic Applications Of Sirna Bioconjugates In Cancer Detection And Treatment, Sunil S. Shah 2021 Seton Hall University

Theranostic Applications Of Sirna Bioconjugates In Cancer Detection And Treatment, Sunil S. Shah

Seton Hall University Dissertations and Theses (ETDs)

Abstract

The emerging field of RNA nanotechnology has led to rapid advances in the applications of RNA in chemical biology, medicinal chemistry, and biotechnology. At the forefront of its utility is the ability to self-assemble multiple siRNAs into nanostructure formulations capable of targeting selected oncogenes and potentiating the gene therapy of malignant tumors. Self-assembled siRNA integrates multiple siRNAs within a single molecular platform for silencing multiple oncogenic mRNA targets with high precision and efficacy to potentially induce cancer cell apoptosis through the RNA interference (RNAi) pathway. Furthermore, the conjugation of siRNA self-assemblies with bio-active probes results in multi-functional theranostic (therapy ...


Theranostic Nanoparticles Folic Acid-Carbon Dots-Drug(S) For Cancer, Godwin Kweku Babanyinah 2021 East Tennessee State University

Theranostic Nanoparticles Folic Acid-Carbon Dots-Drug(S) For Cancer, Godwin Kweku Babanyinah

Electronic Theses and Dissertations

This study aims to prepare theranostic nanoparticles (NPs) that are expected to increase cancer diagnostics and therapeutic efficacy. We prepared the NPs constituting carbon dots (CDs) as an imaging agent, folic acid as a targeting agent, doxorubicin (DOX), or gemcitabine (GEM) as chemotherapy agents. The NPs include noncovalent FA-CDs-DOX, covalent CDs-FA-DOX, and covalent FA-CDs-GEM. Through ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Fourier transform-infrared spectroscopy, the fabrication of these NPs was confirmed. It was discovered that the high drug loading efficiency is the noncovalent series while the high drug loading capacity is the covalent series The in-vitro pH-dependent drug release data indicate ...


Sulfur Anions: Comments Upon Structure, Charles A. Kingsbury 2021 University of Nebraska-Lincoln

Sulfur Anions: Comments Upon Structure, Charles A. Kingsbury

Faculty Publications -- Chemistry Department

This work emphasizes the need for solvent simulation as well as a counterion in calculations concerning anions, although optimization may be difficult. Solvent and counterion both play a large role in conformation of the ion. Part of the reason for the success of sulfur anions in chemical reactions may be the ability of sulfone oxygen(s) to coordinate with the counterion (usually lithium). The “solvent” partially dissociates lithium from the carbanion center.


Using Molecular Dynamics Simulations To Understand Receptor-Complex Communication And Signaling, Hannah Margaret Hoag 2021 Rowan University

Using Molecular Dynamics Simulations To Understand Receptor-Complex Communication And Signaling, Hannah Margaret Hoag

Theses and Dissertations

The overarching purpose of this document is to use Computer-aided drug design and Molecular dynamic simulations to better understand elusive drug-receptor interactions, as well as various types of inter-receptor signaling. Chapter One introduces the theory and importance of Computer-aided drug design and the methodology used in both Chapters Two and Three.

Chapter Two uncovers the relationship between the well-studied ABCB1 transporter and a newly identified drug known as Xanthohumol (XN). XN is compared to a commonly used drug, Doxorubicin (DOX), in this chapter. If the ABCB1 transporter can be properly inhibited, cancer-fighting drugs will be able to stay within the ...


Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli 2021 Chapman University

Label‑Free Spectral Imaging To Study Drug Distribution And Metabolism In Single Living Cells, Qamar Alshammari, Rajasekharreddy Pala, Nir Katzir, Surya M. Nauli

Pharmacy Faculty Articles and Research

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the ...


The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba 2021 The Ohio State University

The Mechanism Of Β-N-Methylamino-L-Alanine Inhibition Of Trna Aminoacylation And Its Impact On Misincorporation, Nien-Ching Han, Tammy J. Bullwinkle, Kaeli F. Loeb, Kym F. Faull, Kyle Mohler, Jesse Rinehart, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted ...


Nad(H) Phosphates Mediate Tetramer Assembly Of Human C-Terminal Binding Protein (Ctbp), Jeffry C. Nichols, Celia A. Schiffer, William E. Royer 2021 University of Massachusetts Medical School

Nad(H) Phosphates Mediate Tetramer Assembly Of Human C-Terminal Binding Protein (Ctbp), Jeffry C. Nichols, Celia A. Schiffer, William E. Royer

University of Massachusetts Medical School Faculty Publications

C-terminal binding proteins (CtBPs) are co-transcriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multi-angle light scattering (MALS) we show that ADP is able to promote tetramer formation of both CtBP1 and ...


Unique Structural Solution From A Vh3-30 Antibody Targeting The Hemagglutinin Stem Of Influenza A Viruses, Wayne D. Harshbarger, Derrick Deming, Gordon J. Lockbaum, Nattapol Attatippaholkun, Maliwan Kamkaew, Shurong Hou, Mohan Somasundaran, Jennifer P. Wang, Robert W. Finberg, Quan Karen Zhu, Celia A. Schiffer, Wayne A Marasco 2021 Dana-Farber Cancer Institute

Unique Structural Solution From A Vh3-30 Antibody Targeting The Hemagglutinin Stem Of Influenza A Viruses, Wayne D. Harshbarger, Derrick Deming, Gordon J. Lockbaum, Nattapol Attatippaholkun, Maliwan Kamkaew, Shurong Hou, Mohan Somasundaran, Jennifer P. Wang, Robert W. Finberg, Quan Karen Zhu, Celia A. Schiffer, Wayne A Marasco

Schiffer Lab Publications

Broadly neutralizing antibodies (bnAbs) targeting conserved influenza A virus (IAV) hemagglutinin (HA) epitopes can provide valuable information for accelerating universal vaccine designs. Here, we report structural details for heterosubtypic recognition of HA from circulating and emerging IAVs by the human antibody 3I14. Somatic hypermutations play a critical role in shaping the HCDR3, which alone and uniquely among VH3-30 derived antibodies, forms contacts with five sub-pockets within the HA-stem hydrophobic groove. 3I14 light-chain interactions are also key for binding HA and contribute a large buried surface area spanning two HA protomers. Comparison of 3I14 to bnAbs from several defined ...


Crystal Structure Of Sars-Cov-2 Main Protease In Complex With The Non-Covalent Inhibitor Ml188, Gordon J. Lockbaum, Archie C. Reyes, Jeong Min Lee, Ronak Tilvawala, Ellen A. Nalivaika, Akbar Ali, Nese Kurt Yilmaz, Paul R. Thompson, Celia A. Schiffer 2021 University of Massachusetts Medical School

Crystal Structure Of Sars-Cov-2 Main Protease In Complex With The Non-Covalent Inhibitor Ml188, Gordon J. Lockbaum, Archie C. Reyes, Jeong Min Lee, Ronak Tilvawala, Ellen A. Nalivaika, Akbar Ali, Nese Kurt Yilmaz, Paul R. Thompson, Celia A. Schiffer

COVID-19 Publications by UMMS Authors

Viral proteases are critical enzymes for the maturation of many human pathogenic viruses and thus are key targets for direct acting antivirals (DAAs). The current viral pandemic caused by SARS-CoV-2 is in dire need of DAAs. The Main protease (M(pro)) is the focus of extensive structure-based drug design efforts which are mostly covalent inhibitors targeting the catalytic cysteine. ML188 is a non-covalent inhibitor designed to target SARS-CoV-1 M(pro), and provides an initial scaffold for the creation of effective pan-coronavirus inhibitors. In the current study, we found that ML188 inhibits SARS-CoV-2 M(pro) at 2.5 microM, which is ...


Synthesis And Cytotoxicity Of Trisubstituted Imidazoles, Venkata Agasthya Kasibotla 2021 Rowan University

Synthesis And Cytotoxicity Of Trisubstituted Imidazoles, Venkata Agasthya Kasibotla

Theses and Dissertations

Aza heterocyclic compounds are an important class of organic compounds that play a major role in medicinal chemistry. Majority of the heterocyclic motifs such as imidazoles, triazoles, piperazines etc. act as building blocks for synthesizing active pharmaceutical ingredients. Several pharmaceutical drugs include these motifs due to their varying physicochemical properties, which enable them to exhibit wide range of pharmacological activities ranging from anti-fungal, anti-neoplastic, anti-helmintic, anti-microbial etc. Owing to their electron rich ring system, imidazole and piperazine based motifs have become an attractive target for design and development of novel chemical structures as new drugs. In the current study, we ...


Two-Way Regulation Of Mmpl3 Expression Identifies And Validates Inhibitors Of Mmpl3 Function In Mycobacterium Tuberculosis, Shipra Grover, Curtis A. Engelhart, Esther Perez-Herran, Wei Li, Katherine A. Abrahams, Kadamba Papavinasasundaram, James M. Bean, Christopher M. Sassetti, Alfonso Mendoza-Losana, Gurdyal S. Besra, Mary Jackson, Dirk Schnappinger 2021 Weill Cornell Medicine

Two-Way Regulation Of Mmpl3 Expression Identifies And Validates Inhibitors Of Mmpl3 Function In Mycobacterium Tuberculosis, Shipra Grover, Curtis A. Engelhart, Esther Perez-Herran, Wei Li, Katherine A. Abrahams, Kadamba Papavinasasundaram, James M. Bean, Christopher M. Sassetti, Alfonso Mendoza-Losana, Gurdyal S. Besra, Mary Jackson, Dirk Schnappinger

Open Access Publications by UMMS Authors

MmpL3, an essential mycolate transporter in the inner membrane of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse antitubercular drugs. However, several of these molecules seem to have secondary targets and inhibit bacterial growth by more than one mechanism. Here, we describe a cell-based assay that utilizes two-way regulation of MmpL3 expression to readily identify MmpL3-specific inhibitors. We successfully used this assay to identify a novel guanidine-based MmpL3 inhibitor from a library of 220 compounds that inhibit growth of Mtb by largely unknown mechanisms. We furthermore identified inhibitors of cytochrome bc1-aa3 oxidase as one class ...


Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis 2021 Claremont Colleges

Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis

CMC Senior Theses

In recent years, many medically promising antibiotics have been discovered in nature, especially in insect-microbe symbioses. One of the better-studied examples of this kind of defensive relationship is that of fungus-growing ants and the antibiotic-producing Actinobacteria. These bacteria produce several defensive chemicals with myriad uses, including one antibiotic that inhibits the growth of several bacterial strains, including other Actinobacteria. This antibiotic (known as nocamycin O) is a promising candidate for medicinal use due to its similarities to bacterial RNA polymerase inhibitors tirandamycin and streptolydigin, which inhibit several human pathogens. The determination of the structure of nocamycin O will be an ...


Docosanoic Acid Conjugation To Sirna Enables Functional And Safe Delivery To Skeletal And Cardiac Muscles, Annabelle Biscans, Jillian Caiazzi, Nicholas McHugh, Vignesh Hariharan, Manish Muhuri, Anastasia Khvorova 2020 University of Massachusetts Medical School

Docosanoic Acid Conjugation To Sirna Enables Functional And Safe Delivery To Skeletal And Cardiac Muscles, Annabelle Biscans, Jillian Caiazzi, Nicholas Mchugh, Vignesh Hariharan, Manish Muhuri, Anastasia Khvorova

Open Access Publications by UMMS Authors

Oligonucleotide therapeutics hold promise for the treatment of muscle- and heart-related diseases. However, oligonucleotide delivery across the continuous endothelium of muscle tissue is challenging. Here, we demonstrate that docosanoic acid (DCA) conjugation of small interfering RNAs (siRNAs) enables efficient (~5% of injected dose), sustainable ( > 1 month), and non-toxic (no cytokine induction at 100 mg/kg) gene silencing in both skeletal and cardiac muscles after systemic injection. When designed to target myostatin (muscle growth regulation gene), siRNAs induced ~55% silencing in various muscle tissues and 80% silencing in heart, translating into a ~50% increase in muscle volume within 1 week. Our ...


Peptidylarginine Deiminase Inhibition Prevents Diabetes Development In Nod Mice, Fernanda M. C. Sodré, Samal Bissenova, Ylke Bruggeman, Ronak Tilvawala, Dana P. Cook, Claire Berthault, Santanu Mondal, Aïsha Callebaut, Sylvaine You, Raphael Scharfmann, Roberto Mallone, Paul R. Thompson, Chantal Mathieu, Mijke Buitinga, Lut Overbergh 2020 KU Leuven

Peptidylarginine Deiminase Inhibition Prevents Diabetes Development In Nod Mice, Fernanda M. C. Sodré, Samal Bissenova, Ylke Bruggeman, Ronak Tilvawala, Dana P. Cook, Claire Berthault, Santanu Mondal, Aïsha Callebaut, Sylvaine You, Raphael Scharfmann, Roberto Mallone, Paul R. Thompson, Chantal Mathieu, Mijke Buitinga, Lut Overbergh

Thompson Lab Publications

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum ...


Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker 2020 Chapman University

Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of ...


Synthesis, In Vitro, And In Vivo Evaluation Of Novel N-Phenylindazolyl Diarylureas As Potential Anti-Cancer Agents., Lucas N Solano, Grady L Nelson, Conor T Ronayne, Shirisha Jonnalagadda, Sravan K Jonnalagadda, Kaija Kottke, Robert Chitren, Joseph L Johnson, Manoj K Pandey, Subash C. Jonnalagadda, Venkatram R Mereddy 2020 Rowan University

Synthesis, In Vitro, And In Vivo Evaluation Of Novel N-Phenylindazolyl Diarylureas As Potential Anti-Cancer Agents., Lucas N Solano, Grady L Nelson, Conor T Ronayne, Shirisha Jonnalagadda, Sravan K Jonnalagadda, Kaija Kottke, Robert Chitren, Joseph L Johnson, Manoj K Pandey, Subash C. Jonnalagadda, Venkatram R Mereddy

Faculty Scholarship for the College of Science & Mathematics

Novel N-phenylindazole based diarylureas have been designed, synthesized and evaluated as potential anticancer agents. In vitro cell viability studies of these derivatives illustrate good potency with IC50 values in the range of 0.4–50 μM in several cancer cell lines including murine metastatic breast cancer 4T1, murine glioblastoma GL261, human triple negative breast cancer MDA-MB-231, human pancreatic cancer MIAPaCa-2, and human colorectal cancer cell line WiDr. The ester group in the lead compound 8i was modified to incorporate amino-amides to increase solubility and stability while retaining biological activity. Further in vitro studies reveal that lead candidates inhibit tube length ...


Weak Binding To The A2re Rna Rigidifies Hnrnpa2 Rrms And Reduces Liquid–Liquid Phase Separation And Aggregation, Veronica H. Ryan, Scott Watters, Joshua Amaya, Balabhadra Khatiwada, Vincenzo Venditti, Mandar T. Naik, Nicolas L. Fawzi 2020 Brown University

Weak Binding To The A2re Rna Rigidifies Hnrnpa2 Rrms And Reduces Liquid–Liquid Phase Separation And Aggregation, Veronica H. Ryan, Scott Watters, Joshua Amaya, Balabhadra Khatiwada, Vincenzo Venditti, Mandar T. Naik, Nicolas L. Fawzi

Chemistry Publications

hnRNPA2 is a major component of mRNA transport granules in oligodendrocytes and neurons. However, the structural details of how hnRNPA2 binds the A2 recognition element (A2RE) and if this sequence stimulates granule formation by enhancing phase separation of hnRNPA2 has not yet been studied. Using solution NMR and biophysical studies, we find that each of the two individual RRMs retain the domain structure observed in complex with RNA but are not rigidly confined (i.e. they move independently) in solution in the absence of RNA. hnRNPA2 RRMs bind the minimal rA2RE11 weakly but at least, and most likely, two hnRNPA2 ...


Isolation, Structure Elucidation, And Synthesis Of Natural Products From Marine Cyanobacteria, Keren Solomon 2020 Duquesne University

Isolation, Structure Elucidation, And Synthesis Of Natural Products From Marine Cyanobacteria, Keren Solomon

Electronic Theses and Dissertations

This thesis describes the isolation, structure elucidation, and synthesis of natural products from marine cyanobacteria. A crude extract from a cyanobacterium collected in Curacao showed selective affinity for the dopamine D5 receptor in a screen against a panel of CNS receptors. Due to the high similarity of the D5 and D1 receptor, to date there are no known ligands that differentiate them. Attempts to purify the compound responsible for this affinity led to the isolation of the known compound caylobolide A. A second extract from a cyanobacterium collected in Panama underwent bioassay-guided fractionation and yielded the novel ...


Separation And Identification Of Permethylated Glycan Isomers By Reversed Phase Nanolc-Nsi-Msn [Preprint], Simone Kurz, M. Osman Sheikh, Shan Lu, Lance Wells, Michael Tiemeyer 2020 University of Georgia

Separation And Identification Of Permethylated Glycan Isomers By Reversed Phase Nanolc-Nsi-Msn [Preprint], Simone Kurz, M. Osman Sheikh, Shan Lu, Lance Wells, Michael Tiemeyer

University of Massachusetts Medical School Faculty Publications

High performance liquid chromatography has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line MSn fragmentation to assign structural features independent ...


Digital Commons powered by bepress