Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

2,142 Full-Text Articles 3,610 Authors 974,035 Downloads 139 Institutions

All Articles in Physical Chemistry

Faceted Search

2,142 full-text articles. Page 1 of 73.

Molecular Vibrations And Shape-Selectivity: A Computational Model Of Biofuel Precursors In Zeolites, Babgen Manookian 2022 University of Massachusetts Amherst

Molecular Vibrations And Shape-Selectivity: A Computational Model Of Biofuel Precursors In Zeolites, Babgen Manookian

Doctoral Dissertations

We have used Density Functional Theory (DFT) to model acyclic and cyclic olefins in acidic zeolites. We have studied the impact of host-guest interactions between adsorbed molecules and zeolite frameworks through the lens of molecular vibrations and shape-selectivity. This work considered three zeolite frameworks with varying pore structures and environments: large pore zeolite HMOR and medium pore zeolites HZSM-5 and HZSM-22. A key finding is that for acyclic olefins in acidic zeolites there exists two regimes of host-guest interaction: a strong interaction leading to protonation and a weak interaction between charged guest and zeolite framework. We found that these interactions ...


A New Insight Into Fungal Cell Wall Architecture By Functional Genomics And Solid-State Nmr Along With Recent Advancements In Dynamic Nuclear Polarization For Analyzing Biomolecules, Arnab Chakraborty 2022 Louisiana State University

A New Insight Into Fungal Cell Wall Architecture By Functional Genomics And Solid-State Nmr Along With Recent Advancements In Dynamic Nuclear Polarization For Analyzing Biomolecules, Arnab Chakraborty

LSU Master's Theses

This dissertation summarizes the findings related to the way by which supramolecular architecture of fungal cell wall changes with genetic mutation, dispensing genes responsible for biosynthesis of cell wall polysaccharides. This is necessary because without perfect picture of how supramolecular assembly changes with genetic mutation it is hard to assess new anti-fungal targets. Alongside this we have highlighted how recent advancement into Dynamic Nuclear Polarization (DNP) methods improved characterization of biomolecules both in case of labeled and unlabeled samples.

First study utilized Solid-state NMR (SSNMR) which is a non-destructive technique hence enabled us for the first time to deduce how ...


Theoretical Studies Of Benzoquinone Reactivity In Acidic And Basic Environments, Natali Majoras 2022 University of Tennessee at Chattanooga

Theoretical Studies Of Benzoquinone Reactivity In Acidic And Basic Environments, Natali Majoras

Honors Theses

Quinones are a class of organic compounds containing a six-membered unsaturated ring with two carbonyl groups. They are biologically relevant mostly due to their ability to participate in redox reactions. Prior experiments in our lab showed that quinones can induce protein modifications that are pH dependent. In an acidic environment the modifications were less significant than in a basic environment. Previous computational studies have also been carried out to model, in neutral solutions, the reaction between various quinones and various amines. Various amine groups are used as a model for the amino group of lysine to represent protein modification. The ...


Real-Time Monitoring Of Paraquat Photodegradation Using Colloidal Gold Surface Enhanced Raman Spectroscopy, Nathan Wilson 2022 Western Kentucky University

Real-Time Monitoring Of Paraquat Photodegradation Using Colloidal Gold Surface Enhanced Raman Spectroscopy, Nathan Wilson

Masters Theses & Specialist Projects

Monitoring chemical reactions in aqueous solution is a challenge because most instrumental techniques either are not suited for the rapid timescales, are not sensitive enough to detect products at low concentrations, or do not have sufficient structure-to-spectrum relationships. Raman spectroscopy is a promising method to monitor reactions, as it is fast, dependent on chemical structure, and has little interference from water. However, Raman scattering is generally very weak. Surface-enhanced Raman spectroscopy (SERS) improves the signal strength of Raman spectroscopy by using a metal surface plasmon, or oscillation of the surface’s electrons, to allow for highly selective and sensitive detection ...


Gas-Phase Proton Affinities For Twenty Of The Proline-Containing Dipeptides, Henry Cardwell 2022 William & Mary

Gas-Phase Proton Affinities For Twenty Of The Proline-Containing Dipeptides, Henry Cardwell

Undergraduate Honors Theses

Peptide fragmentation plays a crucial role in the analysis of proteins through mass spectrometry-based proteomics. Most proteomics experiments take place in the low-energy regime and are governed by the mobile proton model which predicts random cleavages along the peptide backbone; however, there sometimes arise circumstances where the mobile proton model fails causing sequencing algorithms to misidentify peptides. One such example is noted in the “proline effect” wherein proline-containing peptides preferentially fragment N-terminal. While it has been established that the “proline effect” is due to the rigidity and basicity of the proline N-terminus, a further understanding of the factors influencing the ...


Automated Parallel Optimization Of Simulation Parameters Using Modified Nelder-Mead Simplex Algorithm, Erina Mills 2022 Clemson University

Automated Parallel Optimization Of Simulation Parameters Using Modified Nelder-Mead Simplex Algorithm, Erina Mills

All Dissertations

Computational simulations used in many fields have parameters that define models that are used to evaluate simulated properties. When developing these models, the goal is to choose the parameters that best replicate a set of desired properties. Mathematical optimization methods can be used to optimize the simulation parameters by defining a function that uses simulation parameters as input and outputs a value describing how well a set of experimental properties are reproduced.

Because simulated properties are often calculated using stochastic sampling methods, this optimization involves an objective function that is noisy and expensive to evaluate. Also, optimization of the simulation ...


The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin McCarver 2022 University of Tennessee, Knoxville

The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin Mccarver

Doctoral Dissertations

With the ever increasing availability of computational resources, more challenging chemical systems can be studied. Among these challenges are the rotational and vibrational spectra of diatomic molecules within spectroscopic accuracy, the environmental perturbations induced on a rotating water molecule, the prediction of free binding energies of lanthanide complexes using machine learning, and the study of catalytic mechanisms through a theoretical framework. High levels of electronic structure theory were combined with a rigorous treatment of either the anharmonic vibrational wave functions to study diatomic molecules or the rotational wave functions to study H2O-pH2 interactions. The former was initially ...


Experimental Physical Chemistry Applications For Material Science: The Neutron Vibrational Spectrum Of Biaxially-Oriented Pet And Hkust-1 As A Qcm-Based Ethylene Sensor, Zachary D. Stroupe 2022 University of Tennessee, Knoxville

Experimental Physical Chemistry Applications For Material Science: The Neutron Vibrational Spectrum Of Biaxially-Oriented Pet And Hkust-1 As A Qcm-Based Ethylene Sensor, Zachary D. Stroupe

Doctoral Dissertations

This work is divided into two comprehensive subjects exploiting fundamental properties of physical chemistry to understand applied materials. The two subjects will be: the inelastic neutron scattering of thin polyethylene terephthalate (PET) films and the design and development of a quartz crystal microbalance-based ethylene detector. For the work involving the thin films, the inelastic neutron scattering (INS) was accomplished using the high flux of the VISION vibrational spectrometer at the Spallation Neutron Source yielding the highest quality data currently available. The torsional vibrational modes of biaxially-oriented PET (bPET) will be reported with the help of DFT calculations to aid in ...


Humid Air Corrosion Of Carbon Steel And Stainless Steels Under Gamma Radiation: The Role Of Solution Volume And Radiolysis Products, Masoud Zakeri 2022 The University of Western Ontario

Humid Air Corrosion Of Carbon Steel And Stainless Steels Under Gamma Radiation: The Role Of Solution Volume And Radiolysis Products, Masoud Zakeri

Electronic Thesis and Dissertation Repository

As nuclear power plants age and their lifetimes are extended, it is critical to be able to accurately assess the long-term integrity of the reactor structural materials. A current investigation into a leak in the End Shield Cooling (ESC) System in Ontario Power Generation’s Pickering Unit 6 reactor has raised a potential issue. The corrosion of the supporting structural materials (carbon steel (CS) and stainless steel (SS)) in the presence of ionizing radiation in small stagnant solutions and humid air conditions therefore needs careful evaluation.

This project investigates the effect of water radiolysis and humid air radiolysis products (H ...


Synthesis And Characterization Of A Novel Reaction-Based Azaborine Fluorescent Probe Capable Of Selectively Detect Carbon Monoxide Based On Palladium-Mediated Carbonylation Chemistry, Samuel Moore, Carl Jacky Saint-Louis 2022 Kennesaw State University

Synthesis And Characterization Of A Novel Reaction-Based Azaborine Fluorescent Probe Capable Of Selectively Detect Carbon Monoxide Based On Palladium-Mediated Carbonylation Chemistry, Samuel Moore, Carl Jacky Saint-Louis

Symposium of Student Scholars

Azaborines are fascinating compounds because they possess valuable properties such as photochemical stability, have high molar absorption coefficient and high fluorescent quantum yields, as well as large Stokes shifts and tunable absorption/emission spectra. Here, we designed, synthesized, and will examine a novel reaction-based azaborine fluorescent probe capable of selectively detect carbon monoxide (CO) based on palladium-mediated carbonylation chemistry. This novel azaborine fluorescent probe will exhibit high selectivity for CO and display a robust turn-on fluorescent response in the presence of CO in aqueous buffer solution.


Ketal-Azaborine Versus Ketal-Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Heteroaromatic Polycyclic Chromophores, Albert Campbell, Janiyah Riley, Samuel Moore, Albert Campbell 2022 Kennesaw State University

Ketal-Azaborine Versus Ketal-Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Heteroaromatic Polycyclic Chromophores, Albert Campbell, Janiyah Riley, Samuel Moore, Albert Campbell

Symposium of Student Scholars

Flat-structured heteroaromatic polycyclic compounds with extended conjugated π-systems such as azaborines are in high demand in the material and imaging technology markets because of their unique features such as simultaneous tunability of fluorescence color and intensity. We have designed, synthesized, and investigated a series of novel conjugated thermally stable ketal-azaborine chromophores that contain a phenyl ring as a spacer between electronic moieties and the ketal-azaborine core as easily tunable high-luminescent organic materials. We investigated the impact of the phenyl spacer on the ketal-azaborine unit. We examined the structural effects on their photophysical properties by incorporating electron –donating and –withdrawing substituents ...


Azaborine Versus Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Azaborine Chromophores, Kaia Ellis, Janiyah Riley, Lyric Gordon, Janiyah Riley 2022 Kennesaw State University

Azaborine Versus Azaborine With A Spacer: Structural Effects On The Photophysical Properties Of Tunable Azaborine Chromophores, Kaia Ellis, Janiyah Riley, Lyric Gordon, Janiyah Riley

Symposium of Student Scholars

Azaborines are fascinating compounds because of their valuable and interesting optical properties making them suitable to be utilized in many optoelectronic devices. We have designed, synthesized, and investigated a series of novel conjugated thermally stable azaborine chromophores by incorporating a phenyl ring as a spacer linking the chromophore to different electronic moieties as easily tunable high-luminescent organic materials. We investigated the effect of the phenyl spacer on the azaborine unit. The substituent effects of different electronic moieties were investigated by the insertion of electron –withdrawing and –donating moieties to the phenyl spacer. We examined the role of the electron –donating ...


Gravimetric Determination Of The Adsorption Capacity Of Zirconium Hydroxide For Isopropanol, Riley Bennett 2022 Kennesaw State University

Gravimetric Determination Of The Adsorption Capacity Of Zirconium Hydroxide For Isopropanol, Riley Bennett

Symposium of Student Scholars

Zirconium hydroxide’s adsorption properties make it useful for the decomposition of chemical warfare agents and toxic industrial chemicals. In the current study, isopropanol is used to examine the adsorption behavior of the zirconium hydroxide surface sites through a series of microreactor experiments. Initially, the mass delivery of isopropanol is calibrated as a function of temperature and gas flow rate. Separate experiments can then be done by flowing the isopropanol mixture through a sample of zirconium hydroxide to quantitatively determine the amount of isopropanol that can adsorb onto a sample of zirconium hydroxide. FT-IR spectra of the gas mixtures flowing ...


The Investigation Of Geologically Relevant Metal Phosphites As A Plausible Source Of Phosphorus In Prebiotic Chemistry, James Quarles, Amelia Shengaout, Kimberly Meyberg, Heather Abbott-Lyon 2022 Kennesaw State University

The Investigation Of Geologically Relevant Metal Phosphites As A Plausible Source Of Phosphorus In Prebiotic Chemistry, James Quarles, Amelia Shengaout, Kimberly Meyberg, Heather Abbott-Lyon

Symposium of Student Scholars

To understand the origin of life, the abiotic incorporation of phosphorus in energy-promoting molecules like adenosine triphosphate (ATP) need to be identified. However, a consensus has not been reached on the source of phosphorus for prebiotic chemistry on Archaean Earth. One hypothesis is that metal phosphites were an important source of phosphorus for prebiotic chemistry. The primary issue with this hypothesis is the lack of phosphites in the geological rock record, where different phosphorus compounds (mostly inorganic phosphates) are observed instead. Two geologically relevant metal phosphites with varying waters of hydration, CaHPO3 and MgHPO3, were synthesized, structurally characterized, and thermally ...


Computer Simulation Of Raman Spectra And Mode Assignment: Application To Methane, Oluwaseun Omodemi, Ciara Tyler, Martina Kaledin 2022 Kennesaw State University

Computer Simulation Of Raman Spectra And Mode Assignment: Application To Methane, Oluwaseun Omodemi, Ciara Tyler, Martina Kaledin

Symposium of Student Scholars

This work uses driven molecular dynamics (DMD) method, in conjunction with an analytic PES calculated using MP2/aug-cc-pVDZ energies to identify and assign Raman vibrational modes of methane. Recently, a new linearized approach was proposed for the Polarizability Tensor Surfaces (PTS) that yields a unique solution to the least-squares fitting problem and provides a competitive level of accuracy compared to the non-linear PTS model. We used the previously reported B3LYP/6-31+G(d) molecular geometries for CH4 and generated a new PTS at the MP2/aug-cc-pVDZ level of theory. The performance of the linearly parametrized functional form for the ...


Plasmonically-Active Nanomaterials For Enhanced Second-Harmonic Generation And Chemical Reactions, Denis AB Therien 2022 The University of Western Ontario

Plasmonically-Active Nanomaterials For Enhanced Second-Harmonic Generation And Chemical Reactions, Denis Ab Therien

Electronic Thesis and Dissertation Repository

Upon excitation by an electromagnetic field, metallic nanomaterials will produce highly localized areas of electromagnetic enhancement, a phenomenon known as localized surface plasmon resonance (LSPR), which can be applied to a variety of techniques including second-harmonic generation (SHG) and surface chemistry. These tunable LSPRs can be modelled prior to fabrication by finite-difference time-domain (FDTD) calculations and observed experimentally by SHG microscopy (SHGM). In this thesis, two types of nanomaterials were characterized using SHGM: plasmon-active dendritic fractals (dendrimers) and transition-metal dichalcogenides (TMDs). Dendrimers with specific geometries and LSPRs were used to demonstrate how nanomaterial symmetry affects SHG as well as how ...


Microfluidic Paper Analytical Devices, Madison Page 2022 Taylor University

Microfluidic Paper Analytical Devices, Madison Page

Chemistry

Microfluidic paper analytical devices (µPADs) are small, paper-based matrices similar to Lab-on-a-Chip (LOC). They are capable of semi-quantitative analysis, with applications ranging from medical to environmental to food and beverage testing. Important to improving point-of-care devices (POCs), various techniques have been integrated into µPADs to customize analysis and fit different clinical situations.


Comparing And Contrasting Therapeutic Drugs Vs. Lifestyle Changes That Combattype-Ii Diabetes, Alexander Cline Helmuth 2022 Taylor University

Comparing And Contrasting Therapeutic Drugs Vs. Lifestyle Changes That Combattype-Ii Diabetes, Alexander Cline Helmuth

Chemistry

In this thesis, I will be presenting various preventive approaches to combat type-II diabetes. The focus of this paper will be comparing and contrasting therapeutic drug targets such as Metformin and Sulfonylureas that are prescribed for type-II diabetic patients versus taking preventative steps such as making lifestyle changes including weight management, physical activity, and having a balanced diet that prevents onset of type-II diabetes or helps patients manage type-II diabetes. From this paper, one will gain insight on how there are multiple approaches to combat type-II diabetes that are not in the form of the pill.


The Application Of Biological Processes To Increase Energy Potential In Landfills, Ashlyn Eisenhart 2022 Taylor University

The Application Of Biological Processes To Increase Energy Potential In Landfills, Ashlyn Eisenhart

Chemistry

There has been a dramatic increase in the amount of waste that we humans have created. This has been due to population growth, an increase in industrial manufacturing, along with urbanization and modernization.8 The number of tons of municipal solid waste entering landfills has increased from 82.5 million tons in 1960 to 146.1 million tons in 2018.17 However, thanks to recycling, composting, and energy recovery from combustion, the percentage of solid waste going to landfills has dramatically decreased, from around 93.6 to about 65.4 percent.17


Chemistry Of Toothpaste, Kayla Blanche Kirtley 2022 Taylor University

Chemistry Of Toothpaste, Kayla Blanche Kirtley

Chemistry

The chemistry of toothpaste is explained, with a description of the chemical components and their mode of action in the role of toothpaste.


Digital Commons powered by bepress