The Reveal: A Technical Study And Conservation Treatment Of An Overpaint Portrait,
2024
SUNY University at Buffalo
The Reveal: A Technical Study And Conservation Treatment Of An Overpaint Portrait, Camille Ferrer
Art Conservation Master's Projects
A severely damaged 19th-century oil painting depicting a portrait of a woman was treated at Patricia H. and E. Garman Art Conservation Department. A typed letter provided by the owner mentioned that it has been previously restored yet returned with unsatisfactory results. After further examination, the painting appeared to have been previously treated multiple times by different people. There was overpaint distinctly present on the face and later discovered to be present overall. The full state of condition of the painting was initially unknown due to the sum of the surface being overpainted. However, there were evidence of paint loss …
Speciation Of Elements Via A Sequential Extraction Procedure In Municipal Wastewater Biosolids From Three Rural Wwtp In East Texas (Usa),
2023
Stephen F Austin State University
Speciation Of Elements Via A Sequential Extraction Procedure In Municipal Wastewater Biosolids From Three Rural Wwtp In East Texas (Usa), Kefa K. Onchoke
Faculty Publications
In this data article, the bioavailability of elements in municipal wastewater sludge (also known as biosolids) in samples collected from three treatment plants in East Texas, USA was evaluated. Although detailed speciation of the metals were assessed by using inductively coupled plasma optical spectroscopy (ICP-OES), and were discussed in the research article titled “Evaluating bioavailability of elements in municipal wastewater sludge (Biosolids) from three rural wastewater treatment plants in East Texas (USA) by a sequential extraction procedure” [1], this report presents the absolute raw concentrations and fractionations of the 26 metals from the biosolids (Nacogdoches Wastewater Sludge, Lufkin Wastewater Sludge, …
Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects,
2023
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects, Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang
Journal of Electrochemistry
Copper interconnects are essential to the functionality, performance, power efficiency, reliability, and fabrication yield of electronic devices. They are widely found in chips, packaging substrates and printed circuit boards, and are often produced by copper electroplating in an acidic aqueous solution. Organic additives play a decisive role in regulating copper deposition to fill microgrooves, and micro-vias to form fine lines and interlayer interconnects. Generally, an additive package consists of three components (brightener, suppressor, and leveler), which have a synergistic effect of super-filling on electroplating copper when the concentration ratio is appropriate. Many works of literature have discussed the mechanism of …
Effect Of Amine Additives On Thermal Runaway Inhibition Of Sic||Ncm811 Batteries,
2023
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Effect Of Amine Additives On Thermal Runaway Inhibition Of Sic||Ncm811 Batteries, Bo-Wen Hou, Long He, Xu-Ning Feng, Wei-Feng Zhang, Li Wang, Xiang-Ming He
Journal of Electrochemistry
The high energy density of NCM batteries with high nickel content is a key advantage in replacing fossil fuels and promoting clean energy development, at the same time, is also a fundamental cause of serious safety hazards in batteries. Primary and secondary amines can lead to ring-opening polymerization of common ethylene carbonate electrolytes, resulting in an isolation layer between the cathode and the anode, and improving the thermal safety of the battery. In this work, the safety of batteries is considered both at the material level and at the cell level, based on the chemical reactions between amines and the …
Pulse Electroplating Of Nanotwinned Copper Using Mps-Peg Two-Additive System For Damascene Via Filling Process,
2023
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215213, China
Pulse Electroplating Of Nanotwinned Copper Using Mps-Peg Two-Additive System For Damascene Via Filling Process, Yu-Xi Wang, Li-Yin Gao, Yong-Qiang Wan, Zhe Li, Zhi-Quan Liu
Journal of Electrochemistry
High density nanotwinned copper films were pulse electroplated using an optimized electrolyte. In order to find out the influencing factors on the formation of nanotwins, series contents of MPS were added to the electrolyte during the pulse electroplating process. It was found that the copper films electroplated without MPS had large grains but a few nanotwins. And the grain size was about 0.9 μm on average, and the texture components of (110) and (111) crystal orientations were calculated as 49% and 27.8%, respectively. Differently, when 10 ppm MPS was added, the microstructure was changed to columnar grain with high density …
Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations,
2023
State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations, Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu
Journal of Electrochemistry
In the field of metal-semiconductor composites based plasmon-mediated chemical reactions, a clear and in-depth understanding of charge transfer and recombination mechanisms is crucial for improving plasmonic photocatalytic efficiency. However, the plasmonic photocatalytic reactions at the solid-liquid interface of the electrochemical systems involve complex processes with multiple elementary steps, multiple time scales, and multiple controlling factors. Herein, the combination of photoelectrochemical and electrochemical as well as spectroscopic characterizations has been successfully used to study the effects of traps on the photo-induced interfacial charge transfer of silver-titanium dioxide (Ag-TiO2). The results show that the increase of surface hydroxyl groups may …
The Effect Of Hydrogen Peroxide On The Corrosion Dynamics Of Carbon Steel,
2023
The University of Western Ontario
The Effect Of Hydrogen Peroxide On The Corrosion Dynamics Of Carbon Steel, Kwang Soak Gabriel O'Donnell
Electronic Thesis and Dissertation Repository
The Used Fuel Container (UFC) is a key barrier in Canada’s nuclear fuel disposal plan. Understanding the radiation-induced corrosion of the carbon steel (CS) vessel is critical for predicting the long-term integrity of the UFC. Developing a mechanistic understanding of CS corrosion and the effect of solution parameters is essential.
This work investigates the effects of H2O2, the key radiolytic oxidant, on CS corrosion dynamics in small, stagnant solutions. Elementary processes are identified, corrosion rates are calculated, and the effects of H2O2 concentration are investigated. Corrosion was studied by quantifying the concentrations of …
On The Boundary Of The Cosmos,
2023
University of Nebraska-Lincoln
On The Boundary Of The Cosmos, Daniel Linford
Faculty Publications -- Chemistry Department
Intuitively, the totality of physical reality – the Cosmos – has a beginning only if (i) all parts of the Cosmos agree on the direction of time (the Direction Condition) and (ii) there is a boundary to the past of all non-initial spacetime points such that there are no spacetime points to the past of the boundary (the Boundary Condition). Following a distinction previously introduced by J. Brian Pitts, the Boundary Condition can be conceived of in two distinct ways: either topologically, i.e., in terms of a closed boundary, or metrically, i.e., in terms of the Cosmos having a finite …
Investigating Novel Luminescent Materials Towards Applications In Light Emitting Electrochemical Cells,
2023
Western University
Investigating Novel Luminescent Materials Towards Applications In Light Emitting Electrochemical Cells, Kenneth Chu
Electronic Thesis and Dissertation Repository
The search for new and better luminescent materials is becoming increasingly important, as there are significant cost-savings in using luminophores that are brighter and more efficient. Carbon quantum dots (CQDs) and other luminescent materials such as Pt-Ag nanoclusters and TADF compounds are an extremely appealing alternative to existing light-emitting materials, as they are low-cost, easy to synthesize, and non-toxic.
This thesis explores the properties and performance of different luminescent materials to be used in light-emitting electrochemical cells (LECs). In this work, we focused on LECs as their low cost and ease of fabrication aligns well with the ethos of CQDs …
Inkjet-Printed Electrochemical Sensors For Lead Detection,
2023
University of Texas at El Paso
Inkjet-Printed Electrochemical Sensors For Lead Detection, Annatoma Arif
Open Access Theses & Dissertations
This PhD dissertation research has developed a simple, miniaturized, sensitive, selective, reproducible, and disposable 3D (inkjet printed – additive manufacturing technology) gold (Au) plated electrochemical sensor (ECS) on shape memory polymer (SMP) for aqueous lead detection. This technology has shown promising performance in the application of electrochemical sensing (lead (II) detection) due to increased effective electrode surface area (7.25 mm^2 ± 0.15 mm^2) despite miniaturizing lateral surface area (4.19 mm^2). The design, fabrication processes, optimization including bismuth functionalization, evaluation, uncertainty analysis, and cost analysis of the novel SMP based inkjet printed Au plated sensor have been delineated in this manuscript …
Removal Of Nonylphenols From Water And Wastewater Using Alginate-Activated Carbon Beads,
2023
University of Texas at El Paso
Removal Of Nonylphenols From Water And Wastewater Using Alginate-Activated Carbon Beads, Angelica Araly Chacon
Open Access Theses & Dissertations
The presence of contaminants of emerging concern (CECs) have been affecting water quality in recent years. The United States Environmental Protection Agency (U.S EPA) defines CECs as toxic chemicals without regulatory status and with adversely impact on the wildlife and people. Among the CECs, nonylphenols (NPs) are frequently found in all water systems and are categorized as endocrine-disrupting compounds (EDCs) due to their ability to mimic hormones causing reproductive and developmental effects in humans and animals. The main sources of discharge and distribution of NPs into the environment are wastewater treatment plants (WWTPs) which are not designed to remove them. …
Ultramicroelectrode Experiments: Principles, Fabrications And Voltmmetric Behaviors,
2023
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Ultramicroelectrode Experiments: Principles, Fabrications And Voltmmetric Behaviors, Zhen Ma, Jia-Yang Lin, Wen-Jing Nan, Lian-Huan Han, Dong-Ping Zhan
Journal of Electrochemistry
Due to the small size at least in one dimension (< 25 μm), ultramicroelectrode (UME) has small electric-double-layer capacitance, low IR drop, rapid mass transfer rate, fast response, high signal/noise ratio and high spatiotenporal resolution. UME is qualified not only to study the kinetics of fast electrode processes, but also to act as the probe of scanning electrochemical microscopies to obtain the localized chemical or electrochemical reactivity of the substrates. Thus, UMEs play a significant role in various research domains of electrochemistry, and have become an important electrochemical experimental method. Herein, we will introduce the basic principles, a simple fabrication method and voltammetric experimental protocols of UME, providing a guide to carry out the UME experiments.
Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics,
2023
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng
Journal of Electrochemistry
Band alignments of electrode-water interfaces are of crucial importance for understanding electrochemical interfaces. In the scenario of electrocatalysis, applied potentials are equivalent to the Fermi levels of metals in the electrochemical cells; in the scenario of photo(electro)catalysis, semiconducting oxides under illumination have chemical reactivities toward redox reactions if the redox potentials of the reactions straddle the conduction band minimums (CBMs) or valence band maximums (VBMs) of the oxides. Computational band alignments allow us to obtain the Fermi level of metals, as well as the CBM and VBM of semiconducting oxides with respect to reference electrodes. In this tutorial, we describe …
Electrochemical Scanning Tunneling Microscopy: Taking The Initial Stage Of Cu Electrodeposition On Au(111) As An Example,
2023
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Electrochemical Scanning Tunneling Microscopy: Taking The Initial Stage Of Cu Electrodeposition On Au(111) As An Example, Zhuo Tan, Kai-Xuan Li, Bing-Wei Mao, Jia-Wei Yan
Journal of Electrochemistry
Electrochemical scanning tunneling microscopy (ECSTM) plays an important role in the field of electrochemistry, which can obtain potential-dependent structural information of electrode surface with high spatial resolution and observe some reaction processes in electrolyte solutions, and provide a powerful way to understand the interfacial structure and electrode processes from the perspective of high spatial resolution. In this article, the study of electrodeposition of Cu on Au (111) by ECSTM is taken as an example to introduce the experimental methods required for ECSTM and share our experience with other electrochemical groups. Firstly, the working principle of STM is introduced so that …
Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells,
2023
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He
Journal of Electrochemistry
Unitized regenerative fuel cells (URFCs), which oxidize hydrogen to water to generate electrical power under thefuel cells (FCs) mode and electrolyze water to hydrogen under the water electrolysis (WE) mode for recycling, areknown as clean and sustainable energy conversion devices. In contrast to the hydrogen oxidation reaction (HOR) andhydrogen evolution reaction (HER) on the hydrogen electrode side, the sluggish kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction (OER) on the oxygen electrode side requires highly efficient bifunctional oxygencatalysts. Conventional precious metal oxygen catalysts combine Pt and IrO2 with excellent ORR and OER activities toachieve bifunctional electrocatalysis performance, but …
Submission Guidelines,
2023
Chinese Chemical Society | Xiamen University
From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts,
2023
American University in Cairo
From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy
Theses and Dissertations
The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …
Temperature-Pressure Phase Diagram
Of Confined Monolayer Water/Ice At
First-Principles Accuracy With A
Machine-Learning Force Field,
2023
Southern University of Science and Technology
Temperature-Pressure Phase Diagram Of Confined Monolayer Water/Ice At First-Principles Accuracy With A Machine-Learning Force Field, Bo Lin, Jian Jiang, Xiao Cheng Zeng, Lei Li
Faculty Publications -- Chemistry Department
Understanding the phase behaviour of nanoconfined water films is of fundamental importance in broad fields of science and engineering. However, the phase behaviour of the thinnest water film – monolayer water – is still incompletely known. Here, we developed a machine-learning force field (MLFF) at first-principles accuracy to determine the phase diagram of monolayer water/ice in nanoconfinement with hydrophobic walls. We observed the spontaneous formation of two previously unreported high-density ices, namely, zigzag quasi-bilayer ice (ZZ-qBI) and branched-zigzag quasi-bilayer ice (bZZ-qBI). Unlike conventional bilayer ices, few inter-layer hydrogen bonds were observed in both quasi-bilayer ices. Notably, the bZZ-qBI entails a …
Preface To The Special Issue On Interfactial Regulation And Electrochemical Sensors,
2023
Department of Chemistry, Tsinghua University, 100084, China
Preface To The Special Issue On Interfactial Regulation And Electrochemical Sensors, Jing-Hong Li, Yang Tian, Yuan-Hong Xu, Li-Min Zhang
Journal of Electrochemistry
No abstract provided.
Scanning Photoelectrochemical Microscopic Study In Photoinduced Electron Transfer Of Supramolecular Sensitizers-Tio2 Thin Films Systems,
2023
Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
Scanning Photoelectrochemical Microscopic Study In Photoinduced Electron Transfer Of Supramolecular Sensitizers-Tio2 Thin Films Systems, Sheng-Ya Zhang, Min Yao, Ze Wang, Tian-Jiao Liu, Rong-Fang Zhan, Hui-Qin Ye, Yan-Jun Feng, Xiao-Quan Lu
Journal of Electrochemistry
Crafting charge transfer channels at titanium dioxide (TiO2) based photoanodes remain a pressing bottleneck in solar-to-chemical conversion technology. Despite the tremendous attempts, TiO2 as the promising photoanode material still suffers from sluggish charge transport kinetics. Herein, we propose an assembly strategy that involves the axial coordination grafting metalloporphyrin-based photosensitizer molecules (MP) onto the surface-modified TiO2 nanorods (NRs) photoanode, forming the composite MP/TiO2 NRs photoelectrode. As expected, the resulted unique MPB/TiO2 NRs photoelectrode displays significantly improved photocurrent density as compared to TiO2 NRs alone and MPA/TiO2 NRs photoelectrode. Scanning …
