Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 957

Full-Text Articles in Biophysics

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh May 2023

Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh

Honors Program Theses and Projects

Netropsin is an antibiotic that binds in the minor grooves of DNA, which also exhibits anticancer properties. There have been many previous studies that explored the binding of this drug to DNA using traditional methods where an ensemble averaging is used. In this study we explore the interaction of Netropsin with DNA at a single molecule level using dual beam optical tweezers. We trapped and stretched a single DNA molecule using optical tweezers to measure the force experienced by the DNA as a function of extension in the absence and presence of various concentrations of Netropsin. Our results show the …


Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila May 2023

Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila

Open Access Theses & Dissertations

Zika virus (ZIKV) is a flavivirus that is usually transmitted through the bite of infected mosquitoes. This virus can cause a variety of neurological disorders, the most common being Guillain-Barré syndrome in adults. Moreover, it is of great concern in pregnant women, since can cause deformities in the brain and other organs of newborns.Studying the structural characteristics of the virus during its mature and infectious phase can provide crucial information on the mechanisms by which it enters and replicates within host cells, as well as its evolution, transmission, and interaction with other living organisms. The symmetric pattern present in the …


Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez May 2023

Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez

Open Access Theses & Dissertations

Astrocytes, one of the most abundant cell components in the central nervous system (CNS), have been a research target in the last few years. Several studies have found that astrocytes are not only mere supporters of neurons but also of essential processes developed in the CNS. Their malfunction could induce neurodegenerative diseases and brain tumors. Thus, further understanding of astrocytes and their role is of high interest to develop possible new treatments and methods of disease diagnosis, especially in brain cancer. The plant Larrea tridentata (La Gobernadora in Mexico or Creosote bush in the United States) is known to have …


Developing And Applying Computational Methods On Biomolecules, Shengjie Sun May 2023

Developing And Applying Computational Methods On Biomolecules, Shengjie Sun

Open Access Theses & Dissertations

Computational biophysics is an interdisciplinary subject that uses numerical algorithms to study the physical principles underlying biological phenomena and processes. Electrostatic interactions play an important role in computational molecular biophysics and their potential impact on disease mechanisms. At distances larger than several Angstroms, electrostatic interactions dominate all other forces, while the alteration of short-range electrostatic pairwise interactions can also have significant effects. The dual nature of electrostatic interactions, being dominant at long-range and specific at short-range, underscores their profound implications for wild-type structure and function. Any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Microorganisms In Extreme Environmental Conditions, Khanh Mai Nguyen May 2023

Microorganisms In Extreme Environmental Conditions, Khanh Mai Nguyen

Graduate Theses and Dissertations

Organisms are known to be able to prosper under normal and extreme environmental conditions, which are classified as mesophile and extremophile, respectively. Extremophiles can thrive under a large array of conditions, from pressures, temperatures, salinity, and pH to a combination of them. For example, to survive on the ocean floor, marine biomass must have its biomolecular machinery adapted to the high pressures and high salinity environment. Moreover, around the hydrothermal vents, aside from pressure and salinity, the microbes that live there also need to adjust to the temperature as well as the pH level. Aside from high temperatures, researchers also …


Physics 422 Spring 2023 Syllabus - Medical Physics, Ronald Koder Apr 2023

Physics 422 Spring 2023 Syllabus - Medical Physics, Ronald Koder

Open Educational Resources

This is the Spring 2023 syllabus for Physics 315, Medical Physics, at CCNY


Physics 422 Spring 2023 Syllabus, Ronald Koder Apr 2023

Physics 422 Spring 2023 Syllabus, Ronald Koder

Open Educational Resources

Spring 2023 course syllabus for Physics 422, Biophysics, at the City College of New York


Novel 129xe Magnetic Resonance Imaging And Spectroscopy Measurements Of Pulmonary Gas-Exchange, Alexander M. Matheson Mar 2023

Novel 129xe Magnetic Resonance Imaging And Spectroscopy Measurements Of Pulmonary Gas-Exchange, Alexander M. Matheson

Electronic Thesis and Dissertation Repository

Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy.

In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it …


Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis Mar 2023

Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis

Electronic Theses and Dissertations

Intracellular protein trafficking is the movement of membrane-bound organelles to and from requisite locations within the cell. Small GTPases are a critical component to the spatiotemporal accuracy of intracellular trafficking pathways as they determine the specificity and direction of organelle transport. There exists over 150 small GTPases categorized into 5 sub-families and are employed across all cell types. Despite their universal expression and relevance to cellular function, small GTPases remain incompletely understood across tissue types. In various instances, the trafficking pathway of a particular Rab in one cell type may belong to a completely disparate pathway in another cell type. …


Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover Feb 2023

Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover

Dissertations

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The AD brain is characterized by significant neuronal loss and accumulation of insoluble fibrillar amyloid-β protein (Aβ) plaques and tau protein neurofibrillary tangles in the brain. However, over the last decade, many studies have shown that the neurodegenerative effect of Aβ may in fact be caused by various soluble oligomeric forms as opposed to the insoluble fibrils. Furthermore, the data suggest that a pre-fibrillar aggregated form, termed protofibrils, mediates direct neurotoxicity, and triggers a robust neuroinflammatory response.

Antibodies targeting the various conformation of Aβ are important therapeutic agents to prevent the progression …


Arginine-178 Is An Essential Residue For Itpa Function, Nicholas E. Burgis, Caitlin April, Kandise Vanwormer Jan 2023

Arginine-178 Is An Essential Residue For Itpa Function, Nicholas E. Burgis, Caitlin April, Kandise Vanwormer

Chemistry and Biochemistry Faculty Publications

The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C (rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encephalopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is suspected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb the overall structure of the protein, but results in a high level of structural …


Raw Data Files For The Manuscript 'Elastin Recoil Is Driven By The Hydrophobic Effect', Nour M. Jamhawi, Ronald Koder, Richard J. Wittebort Jan 2023

Raw Data Files For The Manuscript 'Elastin Recoil Is Driven By The Hydrophobic Effect', Nour M. Jamhawi, Ronald Koder, Richard J. Wittebort

Publications and Research

These are the raw data files associated with the manuscript 'Elastin Recoil is Driven by the Hydrophobic Effect' by Nour M. Jamhawi, Ronald L. Koder, and Richard J. Wittebort


Exogenous Factors That Impact Huntingtin Aggregation, Adam Skeens Jan 2023

Exogenous Factors That Impact Huntingtin Aggregation, Adam Skeens

Graduate Theses, Dissertations, and Problem Reports

While expansion of a polyglutamine (polyQ) domain is the immediate cause of huntingtin (htt) aggregation associated with Huntington’s Disease (HD), other cellular factors modify aggregation. These include interactions with cellular membranes, protein biding partners, molecular crowding, and proteinaceous seeds. Here, two important factors are biophysically characterized: 1) the interaction of htt with endomembranes and 2) proteinaceous seeds obtained from a variety of htt-derived peptides. In the first project, the aggregation of htt at bilayer interfaces and in the presence of divalent cations was investigated. A major cellular factor implicated in altered htt aggregation is the binding of lipids. Furthermore, the …


Detecting Linc Complex Mps3 And Nuclear Pore Complex Ndj1 Protein Interactions On Yeast Nuclear Membrane S Through Fluorescence Microscopy, Dean Boecher, Rebecca Adams Jan 2023

Detecting Linc Complex Mps3 And Nuclear Pore Complex Ndj1 Protein Interactions On Yeast Nuclear Membrane S Through Fluorescence Microscopy, Dean Boecher, Rebecca Adams

Science University Research Symposium (SURS)

Though cancer cells have been shown to have abnormal nuclear morphologies and responses to mechanical forces, the mechanisms of how mechanical stress is translated into cellular action and structural reorganization within the nuclear envelope are largely unexplored. The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a transmembrane protein complex that connects the actin cytoskeleton to the lamin nucleoskeleton, enabling mechanical forces to be translated between the cytoplasm and the nucleus. In cells exposed to physical stress, nuclear pore complexes (NPCs) –which control the exchange of biochemical signals and macromolecules in and out of the nucleus through mRNA export –have …


Investigation Of Early Complex Formation Of Huntingtin Protein With And Without Lipids, Alyssa R. Stonebraker Jan 2023

Investigation Of Early Complex Formation Of Huntingtin Protein With And Without Lipids, Alyssa R. Stonebraker

Graduate Theses, Dissertations, and Problem Reports

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by the expansion of the polyglutamine (polyQ) domain of the huntingtin protein (htt). The expansion of the polyQ domain beyond a threshold of approximately 35 repeats triggers complex toxic aggregation mechanisms and results in altered interactions between htt and lipid membranes. Many factors modulate these processes. One such modulator includes sequences flanking the polyQ domain, most notably the first 17 amino acids at the N-terminus of the protein (Nt17), and environmental factors including the presence of membranous structures. Nt17 has the propensity to form an amphipathic a-helix in the presence of …


A Biophysical Approach To Modeling Elevational Range Shifts In Colorado Mammal Communities, Ryan T. Mahar Jan 2023

A Biophysical Approach To Modeling Elevational Range Shifts In Colorado Mammal Communities, Ryan T. Mahar

Graduate Student Theses, Dissertations, & Professional Papers

Species geographic ranges are shifting in the face of contemporary climate warming, and documenting range shifts is crucial to our understanding of the underlying drivers mediating movement in geographic range limits. Studies on elevational range shifts with climate change are beginning to accrue within the literature, though observed shifts are idiosyncratic and difficult to predict. Some species may respond to warming temperatures by shifting their range limits upslope, where temperatures are cooler owing to the adiabatic lapse rate. However, species may also respond to warming temperatures in an elevation-dependent manner: if changes in snow depth expose overwintering organisms to colder …


Application Of Computational Biophysics Techniques To Characterize Cell Membrane-Associated Events, Kyle Billings Jan 2023

Application Of Computational Biophysics Techniques To Characterize Cell Membrane-Associated Events, Kyle Billings

Graduate Theses, Dissertations, and Problem Reports

Cell membranes are crowded environments which can modulate protein structure-function relationships through interaction with lipids, other proteins, carbohydrate structures and so on. This work focuses the impact of the membrane environment on two varieties of peptides: Microbial rhodopsin proteins, and cyclic peptides.

Life on Earth is dependent on the ability of plants and microbes to harness sunlight for energy production. Their ability to transform light into carbohydrates requires tailor-made machinery, and for a wealth of microorganisms, microbial rhodopsin proteins (MR) are critical for maintaining the concentration gradients used to produce the energy molecule Adenosine triphosphate (ATP). The central retinal molecule …


Lipid Binding Properties Of Huntingtin As A Novel Therapeutic Target, Chathuranga Siriwardhana Jan 2023

Lipid Binding Properties Of Huntingtin As A Novel Therapeutic Target, Chathuranga Siriwardhana

Graduate Theses, Dissertations, and Problem Reports

As protein aggregation is the defining hallmark of all amyloid diseases, a common therapeutic strategy is to develop molecules that inhibit aggregation. However, this approach has yielded limited success. Many amyloid proteins directly interact with lipid membranes. These interactions promote distinct aggregation pathways and often result in membrane damage leading to toxicity. As a result, directly targeting the ability of amyloids to bind lipid membranes represents a novel therapeutic strategy. As a proof of principle, the interaction between lipid membranes and mutant huntingtin protein (htt) aggregates was used to test this strategy. Mutant htt containing an expanded polygulatmine (polyQ) domain …


Impact Of Sample Conditions On Dna Phosphodiester Backbone Bi/Bii Conformational Equilibrium Dynamics, Autumn C. Pilarski Jan 2023

Impact Of Sample Conditions On Dna Phosphodiester Backbone Bi/Bii Conformational Equilibrium Dynamics, Autumn C. Pilarski

MSU Graduate Theses

DNA damage, such as single base lesions and mismatches, is highly prevalent within cells. If these DNA damage events are not repaired, they could lead to mutations and thus disease and cancer. Intricate repair mechanisms are in place to fix these damage events, one such being Base Excision Repair (BER) and associated enzyme: Thymine DNA Glycosylase (TDG). The first step of this repair process, recognition of the lesion by TDG, is not well understood. The following thesis presents results to better understand the fundamental biophysical question of how a DNA lesion within a mismatch context is recognized in a million …


Multiscale Molecular Modeling Studies Of The Dynamics And Catalytic Mechanisms Of Iron(Ii)- And Zinc(Ii)-Dependent Metalloenzymes, Sodiq O. Waheed Jan 2023

Multiscale Molecular Modeling Studies Of The Dynamics And Catalytic Mechanisms Of Iron(Ii)- And Zinc(Ii)-Dependent Metalloenzymes, Sodiq O. Waheed

Dissertations, Master's Theses and Master's Reports

Enzymes are biological systems that aid in specific biochemical reactions. They lower the reaction barrier, thus speeding up the reaction rate. A detailed knowledge of enzymes will not be achievable without computational modeling as it offers insight into atomistic details and catalytic species, which are crucial to designing enzyme-specific inhibitors and impossible to gain experimentally. This dissertation employs advanced multiscale computational approaches to study the dynamics and reaction mechanisms of non-heme Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases, including AlkB, AlkBH2, TET2, and KDM4E, involved in DNA and histone demethylation. It also focuses on Zn(II) dependent matrix metalloproteinase-1 (MMP-1), which helps …


Exploring The Membrane Protein And Peptide Interactions Of Mitochondrial And Bacterial Lipid Systems, George Saudan Jan 2023

Exploring The Membrane Protein And Peptide Interactions Of Mitochondrial And Bacterial Lipid Systems, George Saudan

Theses and Dissertations (Comprehensive)

This study aims to expand the understanding of interactions between membrane lipids and proteins, and relate it to their biological functions in two experimental systems. The first system focuses on the interaction and conformation of a membrane protein Uncoupling Protein 4 (UCP4) in mitochondrial inner membrane lipids, in the absence and presence of cardiolipin; a lipid specific to mitochondrial inner membranes. The second system considers the interaction and conformation of a cell penetrating peptide, Penetratin, which can interact with both mammalian and bacterial cells. A N- and C-termini protected form of this 16-meric peptide (Pen2) was used to explore its …


Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey Jan 2023

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey

CMC Senior Theses

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a clinically effective and safe treatment, there is little understanding of the radiobiological relationship between absorbed dose and tissue response, and thus there is no dosimetric standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the time pattern of delivery. BED is a virtual dose that can …


Biophysical Insights Into Peptide And Alcohol Perturbations On Biomimetic Membranes, Michael Hai Nguen Jan 2023

Biophysical Insights Into Peptide And Alcohol Perturbations On Biomimetic Membranes, Michael Hai Nguen

Electronic Theses and Dissertations

Biological membranes exist in every domain of life. Life exists due to the presence of these special structures for which we take for granted. They are composed of fatty lipids and workhorse proteins and act as the premier interface of biological processes. Due to the sheer quantity and complexity within their thin boundary, studying their actions and properties pose challenges to researchers. As a result, simplified biomembrane mimics are employed regularly. We will use several types of biomembrane mimics to understand fundamental properties of membranes. In the present thesis, we also attempt to move beyond the canonical structure-based theories upon …


Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang Dec 2022

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang

Dissertations

The aggregation of amyloid proteins into fibrils is a hallmark of several diseases including Alzheimer’s (AD), Parkinson’s, and Type II diabetes. This aggregation process involves the formation of small size oligomers preceding the formation of insoluble fibrils. Recent studies have shown that these oligomers are more likely to be responsible for cell toxicity than fibrils. A possible mechanism of toxicity involves the interaction of oligomers with the cell membrane compromising its integrity. In particular, oligomers may form pore-like structures in the cell membrane affecting its permeability or they may induce lipid loss via a detergent-like effect. This dissertation aims to …


Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez Dec 2022

Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez

Electronic Theses and Dissertations

Biophysical phenomena are modeled using a combination of quantum and classical methods to interpret and supplement three distinct and diverse problems in this dissertation. In the first project, decarboxylation reactions are ubiquitous across chemical and biological disciplines, yet the origin of non-catalytic solvent effects remains elusive. Specific solvent structure and energetics have not been well described for the monoanion of malonate, nor corrected from the gas-phase charge-assisted intramolecular hydrogen bond model known as “pseudochair”. In the aqueous phase, a low-lying energy conformer known as the “orthogonal conformation” is computed to be preferred by a three-water cluster of hydrogen bonding over …


Dynamics Of Nucleosome Assembly Characterized By Atomic Force Microscopy, Tommy Stormberg Dec 2022

Dynamics Of Nucleosome Assembly Characterized By Atomic Force Microscopy, Tommy Stormberg

Theses & Dissertations

Nucleosomes are the basic repeating unit defining the assembly and function of chromatin. Understanding the fundamental mechanisms of nucleosome structure and dynamics is critical to elucidating the chromatin assembly process. This dissertation describes my work in elucidating the role of different factors that drive the nucleosome dynamics.

In my first study, we characterized, for the first time, the effect of sequence on nucleosome assembly. We then characterized the role of internucleosomal interactions, discovering a critical role internucleosomal interactions in the assembly of higher order structures.

Based on the previous study and literature regarding histone tails, we hypothesized the histone H4 …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …